

5 Authorization,
Authentication,
Accountability, and
Availability Technologies –
The 4 A’s

5.1 INTRODUCTION..5-2
5.2 AUTHENTICATION ...5-3

5.2.1 Overview...5-3
5.2.2 IDs and Passwords ..5-4
5.2.3 Token Cards: Secure ID, Smart Cards, and Java Rings..5-5
5.2.4 Biometrics: Fingerprints, Eye Scans, and Speech Recognition.............................5-6
5.2.5 Using Cryptography for Authentication –Digital Signatures and Session Keys ..5-7
5.2.6 Digital Certificates for Authentication..5-8
5.2.7 Using Kerberos for Authentication .. 5-10
5.2.8 Single Signon (SSO) Systems.. 5-10

5.3 AUTHORIZATION AND INTRUSION DETECTION ... 5-12
5.3.1 Authorization and Access Controls.. 5-12
5.3.2 Intrusion Detection ... 5-13
5.3.3 Real-time Intrusion Detection Systems (IDSs) .. 5-13
5.3.4 Data Mining for Intrusion Detection ... 5-15

5.4 ACCOUNTABILITY AND NON-REPUDIATION ... 5-17
5.4.1 Overview.. 5-17
5.4.2 Non-Repudiation – The Legal Meaning .. 5-18
5.4.3 Non-Repudiation – The Crypto-Technical Meaning... 5-18
5.4.4 Technical Vulnerabilities for NR in Existing Systems... 5-19
5.4.5 Technologies and Approaches for Non-Repudiation.. 5-20

5.5 AVAILABILITY AND INTRUSION TOLERANCE.. 5-22
5.5.1 High Availability – Dealing With Natural and Denial of Service Attacks......... 5-22
5.5.2 Denial of Service Attacks.. 5-23
5.5.3 High Availability, Fault Tolerance, and Intrusion Tolerance 5-24
5.5.4 Replication as a Backbone for Increased Availability .. 5-26
5.5.5 FRS (Fragmentation, Replication, Scattering).. 5-27
5.5.6 Fragmentation Considerations .. 5-28
5.5.7 Scattering Considerations .. 5-28
5.5.8 Combining FRS with Cryptography .. 5-28
5.5.9 Special Considerations ... 5-29
5.5.10 The Reality Check on FRS.. 5-29

5.6 SHORT CASE STUDIES AND EXAMPLES ... 5-29

 5-2

5.6.1 Australian Agency Uses Digital Certificates to Sign Contract with Fujitsu...... 5-29
5.6.2 How Computer-Savvy Investigators Operate.. 5-30
5.6.3 City of Edmonton Upgrades Access Control... 5-31

5.7 CONCLUSIONS .. 5-32
5.8 SUGGESTED REVIEW QUESTIONS .. 5-32

5.1 Introduction

Authentication, authorization, and accountability (AAA) represent an important aspect of
system security. We have also added availability, the 4th A to this equation. As
mentioned previously, PIA3 indicates security and PIA4 indicates intrusion tolerance.
This chapter reviews the basic technologies and approaches needed to support the
following questions related to the 4A’s:
 Authentication: Who are you and how do I know that you are who you say you are?
 Authorization: What rights do you have ?
 Accountability: What have you done or not done?
 Availability: Can you do what you want to do?

Chapter Highlights
 The 4A’s are important aspects of system security and intrusion tolerance.
 Authentication technologies include the following;

ID, also known as a personal identification number (PIN), and a password.
Token cards such as secure ID, smart cards, and Java rings.
Biometrics such as fingerprints, speech recognition, and eyeball scans.
Cryptographic techniques such as digital certificates and digital signatures.
 Multi-factor authentication combines more than one technology, e.g., PIN plus

secure ID card, for stronger authentication.
 Authorization is concerned with assuring that only permitted users can access a

particular system resource.
 Authorization relies heavily on access control, typically enforced through access

control lists (ACLs).
 Intrusion detection is closely related to authorization because intruders are

essentially unauthorized users.
 Intrusion detection systems (IDSs) use real-time techniques as well as data mining to

capture and detect intruder behavior.
• Intrusion detection systems are based on two major principles:
Anomaly detection: tries to determine whether a deviation from an established normal
profile can be flagged as an intrusion.

 Signature detection (also known as misuse detection) uses patterns of known
intrusion to match and identify an intrusion.
 Intrusion detection is an evolving area of research and development.

 Accountability is synonymous to answerability and indicates responsibility.
 Accountability requires tracking who or what accessed and/or made changes to the

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-3

system.
 Logs and audit trails are used to support accountability.
 Non-repudiation (NR) is the ability to provide proof of the origin or delivery of data.
 Legal and cryptographic technical views do not coincide.
 In the paper-based environment, the signatory has complete control over the signing

mechanism.
 In the digital environments the signatory has to rely on the cryptographic

technologies, and documents have to be transmitted over networks and then stored
on computers – all subject to a variety of attacks.

 Main technologies to support NR consist of audit trains, digital signatures, digital
certificates, and a trusted computing environment.

 Availability: percentage of time a system can be used by a user (human or program).
 Hackers and intruders can make a system unavailable by launching denial of service

attacks.
 Replication is a common approach. A Fragmentation-Redundancy-Scattering (FRS)

scheme is a good approach to increase availability plus security.

5.2 Authentication

5.2.1 Overview

Simply stated, authentication is the process of proving someone is who she claims she is.
In practice, authentication is synonymous to positive identification. As we will see,
authentication is also closely related to authorization. Authentication is required to limit
access to resources, to identify participants in transactions, and to create seamless
personalization of information based on identity.

It is naturally important to make sure that only the right users access and manipulate the
right information. Digital enterprises heavily rely on remote communications and
therefore require that all parties involved authenticate one another. In e-business, it is
crucial to identify and authenticate the consumers who buy your products or services,
employees who access internal systems from remote locations via the public Internet, or
business partners who are tightly integrated into your supply chain and ERP systems.

Authentication can be classified in terms of the following factors described in the next
sections:
 Something you know: an ID, also known as a personal identification number (PIN),

and a password.
 Something you have: token cards such as secure ID, smart cards, and Java rings.
 Something you are: fingerprints, speech recognition, or other biometric

identifications.
 Something you belong to: digital certificates and digital signatures indicate, for

example, that you belong to a digital enterprise infrastructure that uses cryptography
to identify you.

 5-4

Each one of these techniques, discussed in the following sections, has its strengths and
weaknesses, as we will discover. To provide stronger authentication, some of these
factors can be combined. For example, a two-factor authentication uses a PIN and a
secure ID card to access a network. This is very common in many VPNs and is also used
in ATM banking. You first insert your ATM card (something you have) and then enter a
PIN (something you know). A really strong authentication could combine all three: a
PIN, a secure ID, plus fingerprints. Using multiple factors for authentication is known as
multi-factor authentication (obviously!).

Theoretically, you can design an extremely strong authentication system by using 5 or 6
factors (a PIN, a password, a secure ID card, an eye scan, and a fingerprint). However,
there are a few tradeoffs:
 Cost: Supporting more factors increases the cost (in dollars and time) of supporting a

system.
 User convenience: More factors create more hassle for the users and decrease the

usability of a system.

Despite these reasons, strong authentication should be used as much as possible. One of
the main drivers is deferred liability, a relatively recent development [Andress 2002].
For example, if a computer owned by your company is not well protected and a hacker
uses this computer to launch an attack on another company, then your company could be
liable for this attack. The current law holds that the third party can not only sue the
perpetrator (the hacker) but also other parties involved in the act, including the party that
served as a jumping-off point (your company). This type of liability has instilled fear in
many organizations.

5.2.2 IDs and Passwords

For authentication, a large number of systems employ the venerable user ID and
password (PW) as a basis for authentication. We are all used to accessing emails,
websites, ISPs, applications, databases, and desktop computers by using IDs and
passwords. The major problem with ID-PW authentication is that it can be hacked
relatively easily because people choose PWs that are somewhat obvious to guess. This
limitation can be addressed by using strong passwords that are at least 7 digits long, plus
requiring use of upper- and lower-case characters, numeric codes, special characters, and
words that are not part of proper names or common dictionaries. In addition, strong PWs
typically expire frequently to irritate the hackers. Some systems use passphrases instead
of passwords for added security (see the sidebar “Passwords versus Passphrases”).

It is important not to send ID and password in clear text (un-encrypted). Clear text PWs
can be read by intruders and are not safe even if you use a 200-character PW or a
passphrase with very contorted numbers.

Due to the known problems with IDs and passwords (i.e., hackers guessing the
passwords or reading them as clear text), some applications choose to make use of one-
time passwords. However, the use of such one-time passwords often requires the
deployment of token cards such as secure ID or smart cards. Deployment and
maintenance of these cards, as discussed later, is an expensive and labor intensive effort.
This is why some systems use cryptographic techniques such as session keys, digital

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-5

signatures, and digital certificates. Many good authentication systems use a combination
of ID-PW, token cards, and cryptography.

Passwords versus Passphrases

A password is a unique string of characters that a user types in as an identification code.
A passphrase is a longer version of a password, and in theory, a more secure one.
Passphrases are typically composed of multiple words; thus they are more secure against
standard dictionary attacks, where the attacker tries all the words in the dictionary in an
attempt to determine the password. For security purposes, passphrases should be
relatively long and contain a mixture of upper and lowercase letters, numeric and
punctuation characters. Some packages, such as PGP, use a passphrase instead of a
password to encrypt the private key on the user’s machine.

5.2.3 Token Cards: Secure ID, Smart Cards, and Java Rings

Secure ID cards have become a de facto standard for token-based authentication. A
secure ID card is a small hand-held device with a LCD that shows a number that changes
every minute. The number is a unique, one-time key that can be used to authenticate the
user because only the owner of the card can know this number. The other player in
secure ID is an Authentication Server (AS) that generates the same number as the secure
card through software. The AS is preprogrammed so that the same keys are generated on
both sides (i.e., synchronized), based on a common key such as an employee number. A
secure ID is used for authentication as follows:
 An employee is issued a secure ID card by a company. The card is unique to each

employee. At the same time, the AS is synchronized with the employee ID.
 The employee accesses the company system through dial-up or other remote access

mechanisms.
 The system prompts the employee for an ID. The employee types his or her ID

(usually an employee number).
 The system then asks for a token key. The employee looks at his or her token card

and enters the unique key being shown by the secure ID card.
 The AS on the other side compares the numbers typed by the user with the ones

generated by the AS. If the numbers match, the user is authenticated, otherwise not.

The key generated by secure ID can be used just for authentication or it can be used as a
key for encryption. This is common in VPNs.

The main criticism of secure ID is that it requires yet another device for us to carry
around. For this reason, secure ID functionality can be imbedded in cellular phones,
laptops and smart cards if needed.

Smart cards look very much like credit cards but contain a chip for special program
processing. Depending on the type of program that runs on the chip, smart cards can be
used for authentication of users, credit card processing, and many other transactions. It is

 5-6

possible that in the future, we will have only one card that will behave as our ID, driver’s
license, and several credit cards.

Smart cards can be very simple memory cards which only keep track of some
information. For example, Metro cards in New York city can be purchased for a fixed
amount ($20, $30, $40). Every time a customer inserts the Metro card through a train
entrance, it deducts $2 from the card and updates the balance on the card. Phone cards
also use the same principle. Other smart cards come with a complete microprocessor that
can run a program. An example is a card that downloads and runs a Java program to
allow the same card to behave as Visa, Mastercard, American Express, or other credit
card.

Smart cards are potentially very powerful – their use is only limited by the imagination
of developers to build small programs that can be downloaded and run on the chip. As
mentioned previously, one smart card can potentially replace your entire wallet.
Although the smart cards have a great deal of potential, they have not been as popular as
initially thought. There are several reasons for this:
 Smart cards need special readers that require extra investment for the participants.
 Standards are needed so that different services can be provided from one card.

Otherwise, we may end up carrying different smart cards for different services (not
very smart!).

 The cost of smart cards should be reduced.

A great deal of information about smart cards can be obtained from the website
(www.smartcardcentral.com).

Java rings were developed by Sun Microsystems as a convenient token device. A Java
ring looks like a regular ring (slightly thicker than the wedding ring but closer to a
college ring). The rings have a chip that can run Java code, so in principle Java rings are
similar to smart cards. These rings can be used conveniently for quick ID checks through
electronic doors and other detectors. A Dallas-based company has commercialized the
Java ring concept under the name “iButton” (www.ibuttob.com).

5.2.4 Biometrics: Fingerprints, Eye Scans, and Speech
Recognition

The purpose of biometrics is to use physical attributes of a person for positive
identification. The main question is what parts to use. The choice depends on the ease of
use, comfort to the users, and the accuracy of the technology in uniquely identifying the
individuals. Examples of biometrics used so far are:
 Fingerprints. This is one of the oldest biometric identification systems and has been

used in police and legal cases for centuries. Significant improvements have been
made in fingerprinting over the years (see the sidebar “Improvements in
Fingerprinting Technologies”).

 Eye scans. These include retina scans and iris (around pupil) scans. These are
human attributes that are very unique to us and can be used for identification. Recent
developments in eye scan technologies have led to extremely accurate systems that
are used in high security areas.

 Voice patterns. Different humans have different voice patterns that can be identified
through sophisticated speech recognition systems for identification.

http://www.smartcardcentral.com/
http://www.ibuttob.com)/

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-7

 Signature dynamics and handwriting. We have different writing styles that can be
recognized by handwriting expert systems.

 Other features such as shape of a face, height, and weight can be used in
conjunction with other factors for a stronger authentication.

Many commercial systems are available and are becoming available for biometric
identification. Some security experts argue that biometrics represent the only reliable
identification systems. A major advantage of biometric systems is that you do not have to
remember or carry things to be identified. Suitability of biometric systems depends on:
 Accuracy (false rejections/acceptances)
 Speed and throughput
 Acceptability to users (social implications)
 Resistance to counterfeiting
 Storage requirements

Current biometric systems range from $100 to $400. Given all these considerations,
fingerprints are the most cost-effective and accurate biometric systems. Eye scans are
extremely accurate but are quite expensive. For additional information on this topic, see
D. Richards, “Biometric Identification,” published in Information Security Management
Handbook, edited by H. Tipton and M. Kraus, 4th and 5th editions, Auerbach, 2000.

Improvements in Fingerprinting Technologies

Fingerprinting is one of the most difficult-to-defeat biometric access control methods.
But acquiring and matching fingerprints is not easy when dealing with large populations.
Traditionally, fingerprinting required ink prints – a messy, time-consuming, and
inconvenient process. More recent systems use the optical fingerprinting technology
which solves the problems connected with ink by snapping a picture of fingers. The main
problem with this technology is that dirty fingers alter fingerprint images in ways that
make it difficult for software systems to find accurate matches, thus making them
unreliable. People have to wash their hands and the fingerprint recognition software has
to be enhanced to adjust for inconsistencies created by dirt and grease on the fingerprint
image. A better technology, developed in 1996 by Ultra-Scan, uses sound waves to scan
fingerprints. Called ultra-sonic imaging, it is essentially the same technology used to scan
pregnant women. Sound waves penetrate dirt, grease, and other contamination on the
finger and create an accurate image of the fingerprint ridge structure. This provides a
system that is easy to use and implement and is also quite accurate.

5.2.5 Using Cryptography for Authentication – Digital Signatures
and Session Keys

Cryptography is used mainly for confidentiality and privacy by encrypting messages.
However, public key cryptography provides a method for authentication also through
digital signatures. A digital signature, discussed in the previous chapter, enables the
recipient of information to verify the authenticity of the information’s origin. Thus,

 5-8

public key digital signatures provide authentication, and digital signature technology can
be used to authenticate the source of a message instead of, or in addition to, the
traditional ID and password. Digital signatures are especially considered vital in e-
commerce transactions where funds are transferred and business commitments are made
over the network.

Many systems enforce authentication by developing a session key that establishes the
identity of partners at the start of a session and is used throughout a session. But then this
session key needs to be encrypted. Should a private or public key system be used? Given
the advantages and disadvantages of these approaches in practice (a private key is
efficient but not very secure, and public keys are not efficient but secure), a public key
system is used to exchange the session key between the two sides. Then this key is used
in a private key system only for that session. Many current systems, such as SSL (Secure
Socket Layer) use this technique.

But nothing is beyond controversy and debate (life would be so boring without
controversy or debate!). For example, one of the primary technologies proposed for
strong authentication is the digital signature, especially for the investment and finance
communities. A possible advantage of digital signature technology concerns the issue of
“non-repudiation” between the signer of an electronic document and a relying party.
There is some controversy about digital signatures giving the same rights to the parties
involved as compared to traditional signatures (see the discussion on non-repudiation in
section 5.4).

5.2.6 Digital Certificates for Authentication

A digital certificate is data that functions much like a physical certificate such as a
passport or driver’s license. A digital certificate includes a person’s public key along
with other information that verifies that a key is genuine or valid. Just as passports and
driver’s licenses identify a person, a digital certificate is used to identify a person with
his or her public key. Thus a digital certificate can be used for authentication. For
example, Joe can show his digital certificate, very much like he shows his passport,
whenever he needs to prove that he really is Joe.

Digital certificates simplify the task of establishing whether a public key really belongs
to the purported owner, and consists of:
 A public key
 Certificate information (“identity” information about the user, such as name, user ID,

and so on)
 One or more digital signatures from CAs

Once created, the certificates can be stored in a secure certificate server, also called a key
server. A certificate server usually provides some administrative features that enable a
company to maintain its security policies – for example, allowing only those keys that
meet certain requirements to be stored (see Figure 5-1).

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-9

CA

User’s
name

Certificate

User’s public
 key

CA’s Private
Key

Signed
Certificate

Figure 5-1: Digital Certificates

A digital certificate can exist in a number of different formats. X.509 is the most
common format. All X.509 certificates comply with the ITU-T X.509 international
standard; thus (theoretically) X.509 certificates created for one application can be used
by any application complying with X.509. In practice, however, different companies
have created their own extensions to X.509 certificates, not all of which work together.
Although X.509 is used widely in many systems, perhaps the most widely visible use of
X.509 certificates is in Web browsers. See the sidebar “X.509 Certificate Format” for a
sample certificate format. As can be seen, a certificate is a text file (in reality, it is a
record in a certificate server).

As we will discuss later, the CA system can be run as a function inside an organization or
by an outside company such as VeriSign (www.verisign.com). A digital certificate
system, wherever it runs, enables partners to verify each other’s identity before
proceeding. For example, a credit card user and merchant can validate that their digital
certificates were issued by an authorized and trusted third party before they exchange
data.

Certificates are created with a scheduled validity period: a start date/time and an
expiration date/time as shown in the sidebar “X.509 Certificate Format.” When the
certificate expires, it will no longer be valid, as the authenticity of its key/identification
pair are no longer assured. There are also situations where it is necessary to invalidate
(revoke) a certificate prior to its expiration date, such as when the certificate holder
terminates employment with the company or suspects that the certificate’s corresponding
private key has been compromised. It is much more important to detect a revoked
certificate than an expired one. Expired certificates are unusable, but do not carry the
same threat of compromise as a revoked certificate.

To summarize, a digital certificate binds an entity’s identification to its public key and is
issued by the Certification Authority. Digital certificates, typically based on the X.509
standard, enable Internet applications and other users to verify the identity of an entity.
Unfortunately, certificates produced by one vendor product may not inter-operate with
another vendor’s because X.509 does not define the formats of the certificate entries and
other necessary provisions. PKIX, the X.509 standard by IETF, defines the contents of
public key certificates and is intended to resolve these inter-operation issues.

X.509 Certificate Format

The X.509 standard defines the information that goes into the certificate. All X.509

 5-10

certificates have the following data (many fields are self-explanatory):
 X.509 version number
 Certificate holder’s public key
 Serial number of the certificate – a unique serial number to distinguish it from

other certificates it issues
 Certificate holder’s unique identifier – this is a unique name across the Internet.

The uniqueness is achieved by several subsections that indicate the user’s
Common Name, Organizational Unit, Organization, and Country).

 Certificate’s validity period – indicating when the certificate will expire
 Unique name of the certificate issuer – the unique name of the CA that signed the

certificate
 Digital signature of the issuer
 Signature algorithm identifier – identifying the algorithm used by the CA to sign

the certificate

5.2.7 Using Kerberos for Authentication

Kerberos (http://ww.mit.edu/kerberos/) is a cryptographic authentication scheme
developed at MIT. It uses a third-party authentication server to grant cryptographic
“tokens” that authenticate users to a given service. Kerberos is used quite heavily for user
authentication because it supports, in addition to the venerable user ID and password
authentication, additional authentication schemes such as certificate-based public key
systems, asymmetric-key cryptography, smart cards, and token cards. We will re-visit
Kerberos in the next chapter.

Digital Certificates Versus ID/Passwords

IDs and passwords are commonly used for authentication and are easy to use and
support. But passwords and user names carry a security risk as they can be guessed or
cracked by adversaries. It can also be very difficult for the users to remember passwords
and user names if they use multiple systems. Although digital certificates are expensive
to set up, they have several benefits. Each user can be issued a unique digital certificate
that can be recognized by multiple systems. In addition, personalized content can be
delivered based on the information contained in the digital certificate, because a
certificate could show what services are typically used by the holder. See the Prudential
Case Study in the next chapter.

5.2.8 Single Signon (SSO) Systems

We all use different systems with different authentication systems requiring different
signon IDs and PWs. These IDs and PWs expire at different times and impose different

http://ww.mit.edu/kerberos/

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-11

requirements for IDs and PWs; thus it is not possible to use the same signon and ID
everywhere. From an end-user point of view, it is highly desirable to have a single signon
that can be used on multiple systems. From a system administrator point of view, it is
also desirable to have single signons to avoid the problems of maintaining security on
many systems with many different options.

A means of sharing the fact that authentication has been performed successfully is to
allow “single signon.” An example is a travel portal offering destination information,
flight schedules, sight-seeing tours, the ability to make reservations, and other services.
To a customer, it should appear as a single website, but in fact different suppliers may be
cooperating to provide the service. A customer should only need to authenticate once to
enter the portal, and information on the successful authentication should be shared with
the different underlying systems, with some validity period.

Different approaches for SSO have been developed and deployed over the years. A
recent example is the Microsoft .NET Passport (see the sidebar “Microsoft .NET
Passport for Single Signon”). The main concept underlying these systems is that of a
security proxy that acts on behalf of the user to sign on to different systems. A security
proxy is a program that stores the different signon IDs and PWs in its own storage and
then produces these when a user needs to log on to a system. Where does the proxy
reside? It can reside on the user client, a server, or both (see Figure 5-2). Most common
browsers (user clients) such as Netscape and Internet Explorer act as your security
proxies by simply remembering and prompting you with IDs and PWs. However, there
is a potential security problem with client-based proxies – the proxy resides on your
machine and anyone who can log on to your machine can also log on to all of your back-
end systems. For this reason, a server-based proxy may be placed on an intermediate
trusted machine. But the intermediate machine has to be very highly trusted. We will
visit SSO again when we discuss Web and Web Services security.

User
Client

Web
Server

System3

System2

System1

Security
Proxy

Security
Proxy

Figure 5-2: Conceptual View of Single Sign-On

Microsoft .NET Passport for Single Signon (SSO)

Microsoft .NET Passport was launched in 1999 to provide a single-signon (SSO) facility
for Internet users. By now, it is one of the largest online authentication systems in the
world because it eliminates the need for users to remember numerous passwords and
signon names in the digital age. The .NET Passport is designed for users who want to
establish their identity once and then move smoothly among various websites. It also

 5-12

facilitates confirmation of the consumer’s identity as the consumer moves from one site
to another. We will discuss Passport in a later chapter.

5.3 Authorization and Intrusion Detection

5.3.1 Authorization and Access Controls

Authorization is concerned with assuring that only permitted users can access a particular
system resource. Authorization relies heavily on access control – the process of checking
whether an authenticated user’s privileges permit the execution of a particular operation
on a particular protected resource. In addition, authentication is the foundation of
authorization. For example, can Alice withdraw money from account zc-11-35? To
authorize this withdrawal, first Alice has to be authenticated, then it has be checked
whether Alice can withdraw from this account. The access control is typically enforced
through access control lists (ACLs) that may look something like the following table.

Table 5-1: Sample Access Control List

User name Resource Name Access Type Allowed
Joe Payroll Read Only
Alice Account zc-11-35 Read, Add, Withdraw
Sam Customer Database Read only
Tim Inventory control Read and Update

Scalability of ACLs is a major issue because modern applications may scale to dozens or
hundreds of Web servers and potentially tens of millions of end users. The administration
of ACLs can be very complex if they must be configured on each Web server system.
Authorization to back-end data or subsystems must be handled as well, including
systems that have existing authorization mechanisms. In addition, authorization to other
key e-business resources such as objects and message queues must be incorporated.

Due to the complexity of managing ACLs, many applications provide access control on
their own because it is not always possible to provide intra-application access control
using Kerberos or public-key schemes. Some products have been released that make use
of the Distributed Computing Environment (DCE) access control policies. These
products, such as HP’s Praesidium, make use of the fine-grained access control
capabilities of DCE and link them to the deployment of Kerberos within a system. Other
products such as the Tivoli Secureway Policy Director provide a centralized
authorization service that is the point for administering access controls for Web servers,
Web applications servers, firewalls, EJBs (Enterprise Java Beans), and other systems.

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-13

5.3.2 Intrusion Detection

Simply stated, an intrusion is an unauthorized action because an authorization is an
agreement between two parties about some actions. For example, according to Table 5-1,
Sam is authorized to only read a customer database. But if Sam attempts to update the
customer database, then he is an intruder. From this point of view, hackers and other
adversaries are intruders who attempt to eavesdrop and/or perform other activities that
they are not authorized to perform. Naturally, there are several types of intrusions. Some
examples include:
 stealing a password and impersonating its owner
 guessing a password by repeated attempts
 flooding a network and/or a server to cause denial of service
 abusing access privileges by internal users
 using pre-packed scripts, often found on the Internet, to attack a network

This list of intrusions is not exhaustive; and, in fact, the classification of all possible
intrusions is an ongoing research topic in this area (especially due to the fact that new
intrusion techniques are continuously discovered).

Good intrusion detection schemes emphasize early detection of intrusions for quick
actions. Should an extranet, a corporate database, or any internal system be
compromised, you need to detect that fact early, and take necessary actions to prevent the
launching of further attacks into the private network.

Virus detection is an example of intrusion detection. Computer viruses can enter your
systems in a variety of ways: via email attachments, from software installs, from files
brought by employees from home, etc. They can quickly proliferate from system to
system and user to user, and cause damage to data, applications and networks. Viruses
must be quickly identified and isolated, and damage must be promptly repaired.

Two types of approaches are used for intrusion detection: real-time detection for
immediate action, and the after-effect analysis through data mining. These two
techniques are briefly reviewed in the next sections.

It should be noted that intrusion detection research has not provided a final solution
preventing all types of intrusions. There is, however, a large set of detection principles
that need to be used by networked systems. Plus, this set is in continuous expansion, as
newer intrusion methods are discovered (notable examples are worldwide Internet
attacks that have been largely covered by the press in the last few years). A basic tool that
is used by most, if not all these detection principles, is using audit data, and, most
typically, system access log data.

5.3.3 Real-time Intrusion Detection Systems (IDSs)

Intrusion detection systems (IDSs) are often considered to work analogously to
“intrusion alarms,” as follows. First, every time an intrusion happens – or, more
generally, whenever the security of the access to the system is compromised – the alarm
sounds. Second, after the alarm sounds, some entity responds to the alarm in various
possible ways: either some automatic software is executed that disallows the intruder any
action, or some external authority (for instance, a system administrator) is informed.

 5-14

These systems attempt to trigger alarms if they detect an intrusion. Intrusion detection
systems (IDSs) are based on two major principles:
 Anomaly detection: determines whether a deviation from an established normal

profile can be flagged as an intrusion. This principle identifies anomalies with
possibly suspicious activities; a detector may give an alarm whenever it sees some
unusual behavior of the traffic in question. The construction of such a detector starts
by forming a structure as to what is considered “usual,” and then decides how to
make the particular assessment that a specific action is not compatible with this
structure. A reason why this principle may not be satisfactory is that it does not
necessarily detect intrusions; or, the number of false alarms can be too high.

 Signature detection (also known as misuse detection): uses patterns of known
intrusion to match and identify an intrusion. This principle identifies suspicious
activities with behavior similar to previously observed intrusions. Detectors
following this principle do not need to care about the normal behavior of the
observed system; but they are not able to detect intrusions that are unknown
generally or even just to the specific system.

In both cases the intrusion detection process goes through the following phases: first,
audit data collected by sensors is analyzed according to a first set of criteria, then some
output is generated according to a second set of criteria and passed to some external
authority, and finally the authority decides according to a third set of criteria on some
action to be taken. It is important to use data mining and knowledge discovery (discussed
in the next section) to build better criteria in all phases of the intrusion detection process.

 Intrusion Detection Systems (IDS) as currently available use anomaly detection and/or
signature detection techniques. These and other types of detection schemes are
embedded in sensors that operate at different levels of a system. Examples of the system
level are:
 Application-level IDS. These sensors recognize that an unauthorized user is

attempting to run an application or is actually running the application. The
applications can be e-commerce applications, mobile applications, supply chain
management systems, or any other modern or legacy applications. The sensors can
detect this by a real-time analysis of logs or by challenging the sensitive application
periodically.

 Middleware-level IDS. This topic has not received a great deal of attention in the
past but is becoming increasing important due to the vital role middleware services
are playing in modern enterprises. These IDSs make sure that the directories that
contain routing information are not contaminated or modified. In addition, XML
Document Translation Definitions (DTDs), used in sensitive XML-based e-
commerce, are monitored for corruption and modifications. The IDSs monitor errors
or sudden changes on such systems and trigger alarms to invoke corrective actions.

 Network-level IDS. These IDSs attempt to sense intrusions mostly at the network
routing and transmission levels. Intruders at this level can cause denials of service or
eavesdrop on information transmission. These issues are especially acute in wireless
networks because of the current weaknesses of network security (we will discuss this
in detail in a later chapter). The IDSs at this level monitor the network traffic patterns
and route the information to alternate routes if they suspect intrusions.

The current state of IDS is not as mature as it should be. A great deal of DARPA
research on advanced IDSs that could detect and react to intrusions quickly is currently

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-15

underway. The future of the current generation of IDSs is also not clear (see the sidebar,
“Are Standalone Intrusion Detection Systems Dead?”). We will look at salient results in
parts III and IV of this book.

Are Standalone Intrusion Detection Systems Dead?

Many IDSs have been developed in the industry in the past few years. In a summer 2003
report called “Hype Cycle for Information Security, 2003,” Gartner stated that “intrusion
detection systems (IDS) are a market failure.” Gartner is advocating that the technology
be incorporated into other products such as firewalls instead of being implemented as a
stand-alone solution. Some vendors have started renaming their IDS software as
“intrusion prevention systems (IPS)” to emphasize active prevention of attacks instead of
just alerts. However, this re-labeling is not helping either.

It does seem that IDS/IPS functionally is moving into firewalls, which are now
performing sophisticated packet inspection in addition to antivirus activities. Companies
such as ISS have introduced all-in-one security devices with combined firewalls and IDS
capabilities. Most of these systems employ “deep packet inspection” techniques to
closely examine the content of packets before letting them enter their corporate
perimeter.

5.3.4 Data Mining for Intrusion Detection1

A recently introduced approach to network intrusion detection is that of using data
mining, in the following two-stage process. In the first stage, data mining algorithms are
used to find useful information from audit data. In the second stage, this information is
used to improve the design and success of intrusion detectors. Thus data mining software
analyzes the data that has been collected in system logs, and from those, attempts to
detect past intrusions and then use these findings to correct future intrusions. The data
mining algorithms also use the two major principles (anomaly detection and signature
detection) used in real-time IDSs. The main challenge is how to use the existing data
mining techniques to detect intrusions.

The currently available data mining tools use a variety of underlying technologies such
as neural networks, decision trees, statistical analysis, and machine learning to detect:
 associations (e.g., linking a user site with intrusions)
 sequencing (e.g., tying events together such as break-ins at certain times of day)
 classifications (e.g., recognizing patterns such as the attributes and profiles of

intruders)
 forecasting (e.g., predicting future intrusions based on past patterns)

1 The information in this section is based on a research project that I was involved in at Telcordia Technologies.

 5-16

Inductive
Learning

Engine
Audit Data

Preprocessor

Audit
Records

Rule Bases
(classifiers)

Decision
Table

Detection
Engine

Decision
Engine

Policies by
experts

Decision

Figure 5-3: An Adaptive Model of Data Mining (based on [Lee 1999])

Data mining for IDS uses anomaly detection and/or signature detection techniques, as
mentioned previously. However, encoding and maintaining of usage profiles and known
intrusion patterns are mostly carried out via manual and ad hoc means. Not only new
intrusion patterns are being invented at present, but “normal profiles” are changing as
time progresses. For example, after September 11, 2001, new attitudes and models of
intruders have been developed. These developments make the job of IDS’s even more
difficult. It is best to use adaptive intrusion detection techniques for analyzing audit data.
A natural candidate for such techniques is an artificial neural network, which not only
takes into account historic intrusion patterns, but also learns and adapts new and/or

evolving patterns.

Inductive
Learning

Engine
Audit Data

Preprocessor

Audit
Records

Rule Bases
(classifiers)

Decision
Table

Detection
Engine

Decision
Engine

Policies by
experts

Decision

Figure 5-3, based on an extension of view presented by Lee [1999], illustrates the basic
model. The actual data mining techniques used in this model may be a combination of
clustering, classifications, neural networks, pattern recognition, and decision trees.

Due to space limitations and ongoing developments in this field, detailed discussion of
these issues is beyond the scope of this book. The interested reader should pursue the
literature shown in the sidebar, “Some References for Intrusion Detection.”

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-17

Some References for Intrusion Detection
 E. Bloedorn, A. Cristiansen, W. Hill, C. Skorupka, L. Talbot and J. Tivel, “Data

Mining for Network Intrusion Detection: How to Get Started,” available at
http://www.mitre.org/support/papers/tech_papers_01/bloedorn_datamining/index.sht
ml.

 S. Axelsson, “Intrusion Detection System: A Survey and Taxonomy,” available at
http://citeseer.nj.nec.com/axelsson00intrusion.html

 W. Lee, S. Stolfo, and K. Mok, “A Data Mining Framework for Building Intrusion
Detection Models,” in Proc. of the 1999 IEEE Symposium on Security and Privacy.

 M. Goebel and L. Gruenwald, “A Survey of Data Mining and Knowledge Discovery
Software Tools,” in SIGKDD Explorations 1, no. 1 (1999), 20-33.

 Piatetsky-Shapiro, Brachman, Khabaza, Kloesgen, and Simoudis, “An Overview of
Issues in Developing Industrial Data Mining and Knowledge Discovery
Applications,” KDD-96, 89-95.

 E. King, Data Warehousing and Data Mining: Implementing Strategic Knowledge
Management, Computer Technology Research, 2000.

 A. Berson et al., “Building Data Mining Applications for CRM”, McGraw Hill,
1999.

 U. Fayyad, et al, (ed.), Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

5.4 Accountability and Non-Repudiation

5.4.1 Overview

The term accountability is used to indicate responsibility to someone or for some
activity. Accountability is synonymous to answerability; for example, in a corporation
top management is accountable to the stockholders. In the security context,
accountability means that the security system should be able to tell who did what, and
when, and how. It is the ability of a system to keep track of who or what accessed and/or
made changes to a system. Modern digital enterprises must provide assurance that the
infrastructure and application resources, including computing platforms, networks, and
data, are only being used by authorized individuals in the right way. This entails keeping
track of the enterprise network and systems usage, and also requires that the
communications between the consumer/business partners and the enterprise application –
the path – is properly tracked.

Mechanisms to support accountability include reporting systems and logs, naturally. A
secure system needs to log all attempts to access corporate resources to ensure that only
authorized people are accessing the system. This logging can also facilitate management
decisions by allowing analysis of usage patterns. A comprehensive, distributed logging
and audit facility for Internet-based applications is needed in modern enterprises.

http://www.hyperdictionary.com/dictionary/responsibility
http://www.hyperdictionary.com/dictionary/to
http://www.hyperdictionary.com/dictionary/someone
http://www.hyperdictionary.com/dictionary/or
http://www.hyperdictionary.com/dictionary/for
http://www.hyperdictionary.com/dictionary/some
http://www.hyperdictionary.com/dictionary/activity
http://www.hyperdictionary.com/dictionary/answerability

 5-18

Non-repudiation (NR), the ability to provide proof of the origin or delivery of data, is an
important aspect of accountability. This issue has gained popularity due to the increase
in e-commerce of the use of digital signatures. A great deal of information on non-
repudiation is becoming available at present. The following discussion is based on the
thoughts by McCullagh and Caelli [McCullagh 1998, McCullagh 2000].

5.4.2 Non-Repudiation – The Legal Meaning

The term “non-repudiation” has legal as well as cryptographic meanings. The traditional
legal meaning of “Non-Repudiation” is that an alleged signatory to a document is always
able to repudiate (i.e., deny) a signature that has been attributed to him or her
[McCullagh 1998]. The reasons for a repudiation of a traditional signature may include
the following:
 The signature is a forgery.
 The signature was obtained via unconscionable conduct by a party to a transaction,

fraud instigated by a third party, or undue influence exerted by a third party.

The general rule of evidence in a legal sense is that if a person denies a particular
signature then it falls upon the relying party to prove that the signature is truly that of the
person denying it [McCullagh 1998]. The term “deny” and the term “repudiate” are
synonymous in this discussion. To overcome a false claim of non-repudiation,
witnessing has been introduced in the common law. A witness is an independent adult
who certifies to the signing of a document and thus reduces the risk of denials at a later
date. Even with witnesses, the signatory can still deny the signature on other grounds
such as undue coercion.

How should non-repudiation work in the digital economy? Basically, the current digital
environment should not have different rules from those in the traditional paper-based
environment. These rules have been developed and tested for centuries to protect all
parties in a transaction.

In a traditional forged paper-based signature (also known as “wet signature”) case, the
onus lies upon the party wishing to rely upon the signature. The relying party is required
to establish that the signature is not a forgery. In particular, the relying party has to prove
that the signature is in fact that of the alleged signatory if the alleged signatory disputes
the signature as belonging to him or her.

5.4.3 Non-Repudiation – The Crypto-Technical Meaning

From a cryptographic point of view, the term “non-repudiation” in authentication means
a service that provides proof of the integrity and origin of data, both in an unforgeable
relationship, which can be verified by any third party at any time. NR protects the sender
against a false denial by the recipient that the data has been received. It also protects the
recipient against false denial by the sender that the data has been sent. In other words, a
receiver cannot say that he/she never received the data and the sender cannot say that
he/she never sent any data.

There are many problems related to NR in the digital environment. In the paper-based
environment, the signatory has complete control over the signing mechanism and there is
no reliance on any technology. This is simply not true in the digital environment because

Nowick Gray
may delete second mention of name; or should this be Caelli?

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-19

the signatory has to rely on the cryptographic technologies – i.e., the public and private
keys that are used to create the digital signatures. In addition, the signature and other
documents have to be transmitted over networks and then stored on computers – all
subject to a variety of attacks.

In addition, NR in digital environments either shifts the onus of proof from the recipient
to the alleged signatory or entirely denies the signatory the right to repudiate a digital
signature. For example, if a digital signature indicates that Joe’s private key was used to
create the digital signature, then Joe has the onus of proving that it is not his digital
signature. Thus there is a shift in the burden of proof. This crypto-technical position does
not correspond with what occurs in the paper-based environment [McCullagh 1998].

This shifts the burden to a Trusted Third Party (TTP) for verification of the digital
signature. The role of TTPs has been formalized by the International Organization for
Standardization (ISO) as regards to non-repudiation services [Granito 1997]. The
purpose of non-repudiation is to provide verifiable proof or evidence of:
 Approval: Non-repudiation of approval service provides proof of who is responsible

for approval of the content of a message.
 Sending: Non-repudiation of sending service provides proof of who sent a message.
 Submission: Non-repudiation of submission service provides proof that a delivery

authority has accepted a message for transmission.
 Transport: Non-repudiation of transport service provides proof for the message

originator that a delivery authority has given the message to the intended recipient.
 Receipt: Non-repudiation of receipt service provides proof that the recipient received

a message.
 Knowledge: Non-repudiation of knowledge service provides proof that the recipient

recognized the content of a received message.

In summary, the Electronic Commerce Environment (Article 13 Model Law) shifts the
onus of proof to the signatory to prove that the digital signature is a forgery. However, in
a paper-based environment, the onus of proof is upon the relying party to prove that the
signature is not a forgery. This change is position is quite controversial, as can be
imagined.

5.4.4 Technical Vulnerabilities for NR in Existing Systems

There are several vulnerabilities in the existing systems that make non-repudiation very
difficult. Here are some examples:
 Most computers are permanently connected to the Internet through DSL, cable

modem or other connections instead of dial-ups. The use of permanent IP addresses
increases the vulnerability to attacks by hackers.

 Computers that are not located behind firewalls are increasingly exposed to outside
attacks. However, many personal computers do not operate behind firewalls.

 Many viruses are being introduced on an ongoing basis. Most of these viruses are
examples of mobile code that operate covertly on computer systems. Trojan horses
are an example.

 Increased use of wireless communications further increases the chances of
eavesdropping and integrity of information being transferred between source and
destination.

 5-20

For example, a virus could be designed to steal private keys. This is relatively easy if the
private key is stored in a commonly known file, such as “PrivateKeys” and
“PGPPrivateKeyRing.” This virus could search storage devices for the private keys and
then FTP them to a remote location. To avoid detection, the program could turn off
display functions to eliminate dialogue boxes and delete any relevant entries to be traced,
before destroying itself. Security policies can be implemented to avoid this situation. For
example, private keys could be stored in password protected files with non-obvious
names, and programs could be denied the ability to start FTPs without an OK from a
security system.

In these situations, how can a signatory deny that he or she did not sign the document?
The alleged signatory has the onus of proof in demonstrating that it was not him or her
who signed the document. In addition, how can a relying party prove that a particular
signatory signed the document? Trusted computing techniques are needed to help in this
area.

5.4.5 Technologies and Approaches for Non-Repudiation

As discussed previously, the main technologies to support accountability and non-
repudiation are:
 Extensive logs and audit trails
 Digital signatures
 Certificate authorities
 Strong security measures in the computer systems to protect the private keys. These

include firewalls, password protection, and obfuscation of directory names to avoid
easy detection by mobile code.

 Secure communication channels between the parties to assure safe transfer of
certificates. Thus, problems such as the “man in the middle” should be avoided.

Many of these topics are discussed under the general heading of “trusted computing.”
Many definitions of trusted computing have been introduced since the 1970s. The best
known are the Trusted Computer System Evaluation Criteria (TCSEC) – a collection of
criteria to grade or rate the security offered by a computer system product
(http://www.radium.ncsc.mil/tpep/process/faq-sect4.html). The TCSEC defines the
following six fundamental requirements of any computer system that aims for a level of
trustworthiness:
 Security Policy: There must be an explicit and well-defined security policy enforced

by the system.
 Marking: Access control labels must be associated with objects.
 Identification: Individual subjects (users) must be identified.
 Accountability: Audit information must be selectively kept and protected so that

actions affecting security can be traced to the responsible party.
 Assurance: Computer system must contain hardware and software mechanisms that

can be independently evaluated to provide sufficient assurance that the system
enforces the security requirements.

 Continuous Protection: The trusted mechanism enforcing these basic requirements
must be continuously protected against tampering and unauthorized changes.

http://www.radium.ncsc.mil/tpep/process/faq-sect4.html

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-21

Other work has refined these requirements to further specify trusted computing. For
example, the British ITSEC (www.itsec.gov.uk/) defined the following seven assurance
levels to form a “trust hierarchy”:

E0; Inadequate assurance

E1: Informal description of architectural design of product/system exists and functional
testing used to confirm target is met.

E2, or E1 plus: Informal description of detailed design exists:
 Evidence of functional testing to be evaluated
 Configuration control system exists
 Approved distribution process exists

E3, or E2 plus:
 Source code and/or schematics for hardware to be evaluated
 Evidence of testing of these must be evaluated

E4, or E3 plus:
 Underlying formal model of security policy supporting the security target exists;

and,
 Security-enforcing functions, architectural design, and detailed design are specified

in semi-formal style

E5, or E4 plus:
 Close correspondence between detailed design and software source

code/engineering hardware design drawings.

E6, or E5 plus:
 Security-enforcing functions and architectural design must be specified formally –

consistent with formal model of security policy.

To be trustworthy, the systems must operate at a minimum level of E3, which proves the
functionality of the signing mechanism, thus preventing unauthorized access to the
private key. Compliance with E3 also assures that the source code for digital signatures is
evaluated, and thus it is possible to show that the signing mechanism will only perform
the desired function and no other. Implementation of E3 and higher levels of assurance
can ensure that the private key has not been stolen.

Development of technologies and environments to support non-repudiation is an ongoing
area of research. For example, the paper titled “A Software Framework for Non-
repudiation Service” by Sung Woo Tak and Eun Kyo Park2 proposes a secure and
efficient software framework for non-repudiation service based on an adaptive secure
methodology. The paper proposes an explicit security framework that supports non-
repudiation of service for a successful e-commerce transaction, and proposes an adaptive
secure methodology to support secure and efficient non-repudiation of service in the
proposed framework. Additional work is needed in this area.

2 “A Software Framework for Non-repudiation Service” by Sung Woo Tak and Eun Kyo Park, Information
Systems Frontiers Journal, Special Issue on Object-Oriented Client/server Internet Environments (January
2003), ed. A. Umar.

http://www.itsec.gov.uk/

 5-22

5.5 Availability and Intrusion Tolerance

5.5.1 High Availability – Dealing With Natural and Denial of service
Attacks

As modern enterprises increasingly rely on digital networks for their revenue and
operations, they need to take additional steps to ensure that their systems and applications
are always available to support their business. The IT infrastructures of digital firms must
provide a continuous level of service availability across all systems interconnected
through a network. Firms such as those in the airline, financial, and telecommunications
service industries with critical applications requiring on-line transaction processing have
traditionally used robust computer systems for many years to ensure 100 percent
availability. In online transaction processing systems, transactions entered online are
immediately processed by the computer system, and numerous changes to databases,
reporting, or requests for information occur each instant. Consider, for example, the
impact of network or website failures on companies such as Amazon.com, where 100%
of the business is conducted online.

From a user point of view, availability reflects the percentage of time a system can be
accessed by a user (human or program). Many factors impact the availability of a system.
For example, network transmission errors and component failures reduce the availability
of a network to the user. Websites can be impacted by network failure, heavy Internet
traffic, and exhausted server resources. Transmission errors can occur due to the
distances between components, number of components and environmental factors (e.g.,
weather). The electronic causes can be white noise, impulses, crosstalk and attenuation.
In wireless networks, fading and losses due to scattering and background noise can result
in reducing the availability of the network to its users. Similarly, disk crashes and CPU
failures can make a computer unavailable to the users.

In addition to the natural reasons for system unavailability, hackers and intruders can
make a system unavailable by launching denial of service attacks (don’t these people
have anything better to do?). In these attacks, adversaries can flood a network segment,
or tie up or crash a server so that the authorized users cannot use it. Several denial of
service attacks have been launched over the years. These attacks reduce the availability
of a system. See section 5.5.2 for further discussion.

System failures, interruptions, and downtime can translate into disgruntled customers,
millions of dollars in lost sales, and the inability to perform critical internal transactions.
The availability A of a system should be translated into business impact. For example, let
us assume that the availability A of a large packet switching network for September 2003
is 0.97. This sounds good. However, let us translate this into potential business loss due
to network “unavailability” of 0.03. Assuming that the network operates 24 hours a day
and 7 days a week, then the network was unavailable for 0.03 x 720 = 21.6 hours per
month (we are assuming 720 hours per month). This is almost a full day! Assuming that
the network handles an average traffic of 5,000,000 packets a day, and the users pay 1
cent per packet to the network owner, this indicates a financial loss of almost $50,000 to
the network owner. Even if the unavailability could not be measured in terms of dollars,

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-23

the loss of one day of work activity is much clearer to the user than an availability figure
of 0.97.

Although availability is not typically discussed in a security context, the denial of service
attacks from the same type of hackers who also launch viruses have linked the two. This
section reviews the commonly used techniques employed to address availability attacks.

5.5.2 Denial of Service Attacks

Denial of service (DoS) attacks generally fall into the following two categories:
 The attacks that crash parts of a system
 The attacks that may not crash a system but may keep it busy so that it cannot do any

productive work

Some attacks, in the knowledge that a system cannot properly handle some requests,
deliberately cause a system crash by sending those requests. For example, many older
systems had flaws in their network stack and could not handle certain types of packets.
The attackers would continually send these packets to the network devices, causing
crashes. To keep systems busy, attackers usually flood the system with a large number of
erroneous messages. For example, a packet can be sent to a server with an erroneous
return address. The server returns the response and waits for the other machine to
respond back. This does not happen, thus the server ties up a link waiting for a response
until it times out (see figure 5-4). If thousands of such packets are sent to the server in a
second, then naturally the server will be tangled up in waiting for responses that never
show up.

Distributed denial of service attacks are an evolution of the standard DoS that flood the
system by exploiting distributed environments. Thus instead of one attacker launching a
DoS attack, several join hands and drive the victim crazy. For example, many clients can
simultaneously send erroneous requests to a victim and keep sending more and more
requests as time goes on (“closing in on the enemy”). The participants in a distributed
DoS attack may be other weak machines that send these requests on behalf of the
attacker without knowing about it. A well known example of distributed DoS is the
series of attacks launched against some of the most visible sites such as Amazon.com,
CNN.com, eBay, Excite, Yahoo!, ZDNet and others.3 These attacks sent up to 1 gigabit
per second to the victim sites and brought them to their knees, causing millions of dollars
of revenue losses. A Canadian youth was apprehended and prosecuted to launch these
attacks.

3 Ghosh, A., Security and Privacy for e-Business, Wiley, 2001

 5-24

Request connection

Acknowledge connection

Acknowledge request

Connection established
ServerClient

a: Normal Internet Connection

Request connection with invalid return address

Additional invalid requests

Acknowledge to invalid address

ServerClient

b: Denial of Service Attack to Cause Flooding
figure 5-4: Standard Denial of Service Attacks to Flood a Server

What can be done to prevent the variety of DoS attacks. The DoS attacks that cause
crashes exploit weaknesses of the victim software. Most of these type of attacks are taken
care of by newer releases of systems and eventually disappear (we hope!). The standard
DoS attacks that cause flooding are much harder to prevent because they exploit the
vulnerabilities of the Internet protocols itself and not their implementation. The
commonly used approaches are:
 Use powerful servers that cannot be easily flooded – many DoS attacks do not

generate enough traffic to disturb very powerful servers.
 Use backup and distributed servers that take over in case of intense attacks.
 Harden your servers by adding/upgrading software that plugs current system

vulnerabilities. Since many DoS attacks are copycats, closing well-known holes is a
good general defense.

 Install special software in routers that filters packets for invalid origin addresses.
This software can be installed at the routers and should ideally be installed by ISPs.
A variety of rules can be used to detect invalid origin address. For example, if a
packet arrives from outside a network, then its origin address should not be the same
as internal network address.

5.5.3 High Availability, Fault Tolerance, and Intrusion Tolerance

High availability, fault tolerance, and intrusion tolerance are sometime used
interchangeably. In fact, these represent stages of building highly robust systems needed
by the digital enterprises. Let us clarify the differences.

First, fault tolerance should be distinguished from high-availability computing. Although
both are designed to maximize application and system availability and both use backup
hardware resources, there are some differences. High-availability computing helps
enterprises recover quickly from a failure, whereas fault tolerance promises elimination
of recoveries altogether by providing non-stop services. Thus fault tolerance goes beyond

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-25

high availability. Let us now include intrusion tolerance. Simply stated, a system is
intrusion tolerant if it is fault tolerant plus secure. Thus intrusion tolerance goes beyond
fault tolerance. It is important to view these three as stages of availability where the
availability increases as we move from one stage to the next (see Figure 5-5).

High Availability
Computing

Fault Tolerant
Computing

Intrusion Tolerant
Computing

Figure 5-5: Stages of Availability

High-availability computing is a minimum requirement for most digital firms. It is
essential for firms with heavy e-commerce processing or for those that depend heavily on
digital networks for their internal operations. Companies such as Amazon and eBay are
examples. These firms require more than 90% availability but tolerate outages by using
good recovery plans. To maximize availability, high-availability computing requires an
assortment of tools and technologies such as redundant servers, mirroring, load
balancing, and clustering. Basically, the computing and communication platform must be
extremely robust with scalable processing power, storage, and bandwidth. A good
disaster recovery plan is essential. An example of good disaster recovery plan is the
Merrill Lynch plan (see the opening case study about World Trade Center Disaster in
chapter 1).

Fault tolerant computing is the next stage where the need for recoveries is eliminated
by tolerating attacks and recovering from them in real-time. Of course, a good recovery
plan is needed for disasters, but the idea is that the systems should be able to handle
failures automatically and modify their behavior to continue processing. These systems
are highly desirable in mission critical applications and command control systems. These
systems use highly reliable and redundant hardware, including power supplies, with
extensive load balancing to achieve non-stop processing. In addition to extra hardware,
they use special software routines or self-checking logic built into their circuitry to detect
hardware failures and automatically switch to a backup device. Parts from these
computers can be removed and repaired without disruption to the computer system.
Companies such as Stratus provide such fault-tolerant systems. Despite efforts, systems
do fail, thus fault tolerance is in fact very high availability computing (above 99%).

Intrusion tolerant computing goes beyond fault tolerant to include security. In other
words, an intrusion tolerant system must be able to withstand attacks from hackers plus
natural failures and still keep on operating. Thus:

Intrusion tolerance = security + availability

From our perspective, PIA3 (Privacy, Integration, Authorization, Authentication,
Accountability) signifies security and PIA4 (PIA3 + Availability) refers to intrusion
tolerance. Since we are focusing on PIA4, in fact we are concentrating on intrusion
tolerance.

 5-26

Naturally, making a system intrusion tolerant is much more challenging than making it
secure. The main reason is that tradeoffs exist between security and availability. For
example, a system can be made highly secure by centralizing everything that is kept
under tight controls. But centralization threatens the availability of the system because if
the site goes down, then the system is not available. In reality, fault tolerance requires
high redundancy which may lower security.

A great deal of research on intrusion tolerance has been undertaken by DARPA. For
example, the DARPA Broad Agency Announcement (BAA) 00-15
on Intrusion Tolerance Systems funded almost 20 projects to look at different aspects of
intrusion tolerance.4 The research included different replication schemes, self re-
configurable systems, and mobile agents, among others. We will only discuss
replications and its variants in this chapter. Other topics are beyond the scope of this
book.

5.5.4 Replication as a Backbone for Increased Availability

A large number of techniques, mentioned above, are used in high availability and fault-
tolerant computing. Load balancing, a popular one, distributes large numbers of access
requests across multiple systems. The requests are directed to the most available system
so that no single device is overwhelmed. If one machine starts to get overloaded, requests
are forwarded to another with more capacity. Mirroring, another common approach, uses
a backup system that duplicates all the processes and transactions of the primary system.
If the primary system fails, the backup system can immediately take its place without any
interruption in service.

Mirroring can be used in databases or servers. However, extensive mirroring is very
expensive, because each system must be mirrored by an identical system whose only
purpose is to be available in the event of a failure. Thus mirroring is more common in
databases (requiring just an extra disk) than servers. Instead of mirroring, clustering
offres a less expensive technique for ensuring continued availability. High-availability
clustering links two computers together so that each computer can act as a backup to the
other computer. Each computer can have a primary as well as a secondary (backup) role.
If the primary computer fails, the second backup computer picks up its processing, and
vice versa. Many computers can also be clustered together as a single computing
resource, with at least one backup for each.

In all of the techniques above, replication is the common denominator in increasing
system availability. Common examples of replication are:
 Providing more than one copy of a file (mirroring) so that if one fails, the other can

take over
 Using more than one server to handle Web traffic (load balancing). Alternate servers

may be assigned by a proxy whenever the primary server becomes unavailable.
 Network devices such as routers and network segments can be clusterd to provide

alternate paths.

Although replication is quite effective in increasing system availability, it introduces
security vulnerabilities. For example, if you have ten copies of a file, then all ten files
have to be secured at the same level. Otherwise, one weak copy of the file could be

4 My project on Intrusion Tolerant Middleware services, funded by DARPA, was one of these projects.

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-27

accessed by an intruder. Thus replication can lead to increased availability but decreased
security. Consequently, replication alone is not sufficient for intrusion tolerance. FRS
(Fragmentation, Replication, and Scattering) is a variation of replication that can help in
intrusion tolerance.

5.5.5 FRS (Fragmentation, Replication, Scattering)

A Fragmentation-Redundancy-Scattering (FRS) scheme [Deswarte 1988, Deswarte
1991, Silva 1998] is a good approach to increase availability plus security. The FRS
technique consists of three activities:
 Fragmentation: Cutting all the sensitive information into several fragments such that

no significant information is contained in any isolated fragment.
 Redundancy: Multiple copies might be introduced by copying the fragments to

tolerate accidental or purposeful destruction or alteration of fragments.
 Scattering: The fragments along with their copies may be scattered amongst the

different sites of the distributed system.

For example, a sensitive file could be split into fragments F1, F2,,, Fn where no fragment
has complete information. Then three copies, say, of each fragment can be created so that
if one copy is destroyed, the other two can be used instead. The copies of the fragments
can be further scattered around a network of computers in such a manner so that an
intruder finds it extremely difficult to develop a complete picture of the document. Figure
5-6 shows an example of FRS. In this case a file F is split into 3 fragments (F1, F2, F3)
and then these fragments are scattered and replicated across computers C1, C2, and C3.

Computer C1 Computer C2 Computer C3

File F

File F1 File F2 File F3

File F1 File F1 File F3 File F2File F2 File F3

a) Original File

b) Fragmentation

c) FRS

Figure 5-6: Fragmentation-Redundancy-Scattering (FRS) Example

This scheme increases the availability as well as security of a document. To adjust
security and availability levels, more fragments could be created with more copies that
are scattered around the network in a mysterious fashion. To further secure highly
sensitive documents, the fragments could be also encrypted before replication and
scattering. For even more security, the scattered fragments could be moved around
periodically to further confuse the intruder. Thus, practical use of FRS raises several
questions such as the following:
 How many fragments should a document be split into?
 How many copies should be created of each fragment?

 5-28

 How should the fragments be scattered?
 Should the fragments be encrypted for added security?
 Should the scattered fragments be re-scattered every now and then?

The main tradeoff is that more sophisticated the FRS scheme, the harder it is to
reconstruct the fragments for normal use. For example, if a file is highly fragmented and
scattered, then every time a user needs to access this file, all fragments have to be
presented by the system software to the user as if the file was never fragmented. The cost
of creating and accessing multiple fragments can be quite high. If a FRS scheme is not
properly designed then the supposed advantages would be lost, making the system more
susceptible to intrusions. More research is needed in this area. The following sections
highlight the key ideas.

5.5.6 Fragmentation Considerations

Attention has to be paid also to how fragmentation can be used and benefit gained from
an object-oriented model of system structuring. One possibility is to fragment based on
the objects created, such that different objects correspond to different fragments. The
user might also be given the flexibility of declaring the amount of security required for
each object. A more extreme form of fragmenting could be to fragment the code based
on the operations and then execute these operations on different machines.

5.5.7 Scattering Considerations

The problems of updating and scattering do also require more attention. Problems that
should be addressed include efficient schemes to recollect the fragments when necessary,
as well as efficient schemes to update these fragments. The efficiency could be studied in
terms of the network link usage as well as the use of computing resources of the system.
Scattering schemes should not only take into consideration the security at each of the
server sites, but also should ensure that a single site contains unrelated fragments.
Investigations into dynamic scattering schemes (whereby the set of sites to which the
fragments are sent is not constant but variable over time) as well as static scattering
schemes are also needed. Detection of corrupted copies of fragments has to be done
efficiently. In particular, when the original document is to be reconstructed, we need to
determine when we need to compare different fragments to detect any unauthorized
changes and what are some optimal schemes to do this. When the user requires just a
portion of the original document, then algorithms to reconstruct just the required portion
most efficiently have to be designed.

5.5.8 Combining FRS with Cryptography

It is quite intuitive that using a combination of cryptographic and FRS schemes should be
more efficient than using either alone. This is because use of scattering might mean that
the ciphers used can be much simpler than conventional ciphers. Cryptographic
techniques along with FRS can be used to address the problem of corrupt system
administrators. But how do we combine these schemes to get different levels of
protection? The basic approach in this case would be to use less of the system resources
while providing the same level of difficulty for the intruder. One option is to combine
different cryptographic keys with different FRS schemes and quantify the cost/benefit to

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-29

the system of interest. This selects the schemes which are the most efficient plus also
satisfy the constraints on the level of intrusion tolerance required by the system. This
should allow the system flexibility to choose different intrusion tolerance levels based on
the threat perception.

5.5.9 Special Considerations

How do the scattering-updating-reconstructing schemes work when some of the server
sites are disconnected? This might mean that the user in some cases is unable to access
his file. This can be considered as the downtime of the system, and guarantees will have
to be provided to the user as to the maximum amount of downtime that he or she will be
subjected to using a given algorithm. Note that the lower the downtime guaranteed, the
more copies of each fragment would have to be made. These copies would then have to
be distributed over sites such that the probability of all such sites failing is less than the
probability of guaranteed downtime. The problem becomes more complicated when one
also considers the fact that some of these sites might have been compromised, and hence
each fragment needed by the user would have to be checked for accuracy. We
understand that the different questions raised above do not constitute an exhaustive set.

5.5.10 The Reality Check on FRS

Theoretically, you can create thousands of fragments that can be replicated and scattered
around hundreds of computers in a large corporate Intranet. However, the following
realities of life need to be considered:
 Every time an authorized user needs to access a file, the fragments have to be

assembled into a whole so that the user can make some sense out of them.
 The performance overhead of ambitious FRS can be very high.
 Special purpose middleware services will be needed to handle FRS requests because

the users should not have to locate and assemble the fragments themselves. Such
middleware is not commercially available at the time of this writing. However,
commercial database management systems, such as Oracle, do support database
partitioning that can be used to support simple FRS schemes.

 The middleware to handle FRS could be quite complex and could itself be target for
viruses and bugs.

Based on these factors, FRS should be undertaken for only extremely sensitive data
stores.

5.6 Short Case Studies and Examples

5.6.1 Australian Agency Uses Digital Certificates to Sign Contract
with Fujitsu

The Victoria’s Transport Accident Commission (TAC) in Australia has embarked on e-
commerce as a way of increasing both efficiency and service delivery to customers and
other stakeholders. To help achieve its vision, TAC chose Fujitsu as its information
technology service provider for the company’s ability to deliver end-to-end e-services.

 5-30

The $20 million contract with Fujitsu will allow TAC to transform its interactions with
its clients, stakeholders and the broader community.

Besides the work itself, the contract signing was a landmark event because the contract
was signed by using digital certificates. It was the first time high-grade Gatekeeper
certificates had been used to sign a digital contract under Australian law. The digital
certificate technology was supplied by eSign Australia. eSign was responsible for the
registration authority services, including validation and authentication of the individuals
signing the contract. In addition, eSign created and issued the digital certificates
containing the TACs and Fujitsu’s electronic credentials.

Using the digital certificates streamlines and simplifies the contract signing process, and
is expected to be tamper-proof – if anyone tries to change the document, it will indicate
to all parties that it has been modified since it was signed. In addition, the identity of a
signatory can be verified anytime by querying the independent certifying authority – in
this case, eSign.

Source: http://au.fujitsu.com/FAL/CDA/0,1531,322~978,00.html

5.6.2 How Computer-Savvy Investigators Operate

Police detectives are increasingly using computers at the crime scene to gather additional
information. These cases involve interesting legal and information security issues. The
following is an example of a computer-savvy investigator who followed a network trail
from a murder probe to child pornography.

On Oct. 16, 1998, Lt. J. J. McLean, a Massachusetts police officer, arrived on a crime
scene where John Hinds lived with his 87-year-old mother, after Hinds had gunned down
two of his family members in the street outside his house. McLean, a computer forensics
expert, started looking for emails exchanged between John Hinds and the victims that
would show a motive for the killings. McLean found a computer in John’s house and
noticed that there were two other computers – Takedown and Chuck – on the network.
McLean later learned that these two computers were in the adjacent house where John
Hinds’ nephews lived.

McLean knew that any or all of the three computers on that network could hold what he
was looking for. He also knew that his search warrant to John Hind’s house did not
automatically allow him to investigate the rest of the network. To search the other two
computers, the police had to get a warrant for the house next door or ask each of the
owners for permission to search the computers for email evidence. The two brothers
gave them the permission. After getting the permission, McLean disconnected the
network cables from murder suspect John Hinds’s computer so that no files could be
transferred or compromised remotely.

Having secured the computers from intrusions, McLean started searching the machines
for email evidence for the murder case. While searching for the emails, he ran into a
great deal of child pornography material on one of the computers in the second house.
The child pornography on this machine gave McLean grounds to declare the system
contraband, seize it without a warrant and ship it, along with John Hinds’s computer, to
the Attorney General’s High Tech Crime Unit lab in Boston.

http://au.fujitsu.com/FAL/CDA/0,1531,322~978,00.html

CHAPTER 5: AUTHORIZATION, AUTHENTICATION, ACCOUNTABILITY, AND AVAILABILITY 5-31

The process of packing computer evidence is also quite intricate. The step-by-step
procedure included: a) photos of the system before disassembling it, b) disconnection of
internal data and power cables to the hard drives to ensure that the drives were not
accessed and possibly tampered with before being removed, c) placement of a write-
protected boot disk in the disk drive to ensure write protection, and d) a detailed
catalogue of what was seized and by whom.

What was the result? The email evidence on John Hinds’s computer resulted in a
conviction of two counts of first-degree murder and a mandatory life sentence. To pursue
the child pornography case, McLean obtained a second search warrant specifically to
examine the computer owned by Chuck Hinds, nephew of John Hinds. Using
sophisticated search tools, McLean found a great deal of child pornographic information
that resulted in conviction and sentencing of Chuck.

Naturally, this type of search and seizure raises several questions. Can a search for emails
for murder start searching for pornographic materials? Where does it end? A superior
court judge upheld McLean’s search, citing that Chuck Hind had permitted the search for
email on his computer. The judge noted that since an email file could be masked by
changing names and extensions, McLean acted legally when he opened some files that
turned out to be child porn files. In addition, the judge noted that the network was
unprotected and that the poor network security opened the door to the case. In other
words, if there had been good security – restricted print and file sharing, encrypted files
and drive, intrusion detection – McLean might not have ever seen the suspect drive or
files. If the suspects had used sophisticated protection, the government may not have
made the case. The suspect might have denied access to the police and had time to erase
the evidence.

Source: N. Roiter, “Cybercop,” Information Security Magazine (April 2002).

5.6.3 City of Edmonton Upgrades Access Control

Many cities have developed electronic access control systems to protect facilities while
being monitored from one central location. These control systems have card readers that
the entrants use to gain access. The entrants insert their card into the card reader and the
reader transmits the card information to a central location for verification. But installation
of such a system is a non-trivial task. For example, the city officials in Edmonton, the
capital of Alberta, Canada, wanted an electronic access control system to help protect
dozens of municipal facilities. A local security dealer was hired for the purchase and
installation of equipment in about 50 sites, including maintenance yards, swimming
pools and ice skating arenas. However, the job was not done right and a host of problems
plagued the system at a number of the sites.

For many years, the city tried to use the system but could not. Eight years later, some
officials were about to scratch the project but decided to hire a systems integrator to
implement the project. The system integrator, Antar-Com Inc. (ACI), a White Plains,
N.Y.-based systems integrator, switched Edmonton to a new access system, wrote
system installation standards, and also trained city employees on system administration.
The new system worked as expected, and the city added new sites, totaling about 100
city-owned facilities that included the city hall and other administrative office space, bus
garages, childcare centers and many other city-owned recreation and work sites. The

 5-32

system includes approximately 650 card readers and 5,000 input points. The system
activities are monitored around the clock from a command center, and alarm information
is transmitted to the command center via Edmonton’s wide area network (WAN). About
4,000 of the city’s 9,000 employees carry access cards., with that number scheduled to
expand significantly.

The city relies on the system heavily and added a redundant server to ensure that the
access system will continue to function without interruption in case of a failure. In
addition to increasing availability, the new system allows authorized city employees to
dial into the main access server from laptops in their homes in the event of an alarm. The
city is also considering integrating cameras with card readers so that the security guards
can use the cameras to match a face with the access card being used to gain entry into
city facilities.

Source: “Access Control & Security Systems” (May 1, 2003), retrieved from
http://govtsecurity.securitysolutions.com/ar/security_edmonton/

5.7 Conclusions

This chapter has scanned the developments in the 4A (authentication, authorization,
accountability, and availability) technologies. The systems that support the 4A’s are
considered highly trusted computing systems. These systems support strong
authentication schemes, digital signatures, digital certificates, intrusion detections, audit
trails, and some levels of replications. These trusted systems provide an environment in
which the users are properly authenticated and authorized. In addition, any deviations
from normal behavior are detected. In addition, a trusted computing system is needed for
a fair non-repudiation system. Without a trusted computing system, neither party – the
signer or the recipient – can prove their respective case.

5.8 Suggested Review Questions

1) What are the differences between authentication and authorization?

2) Prepare a table that lists the various authentication schemes along with their
strengths and weaknesses.

3) What exactly is strong authentication? Give examples. Explain why strong
authentication should not be used in all cases.

4) How is intrusion detection related to authorization?

5) What are different types of IDSs? Which one appears to be most promising?

6) What are the main issues in accountability, and what techniques are used to support
accountability?

7) What is non-repudiation (NR) and why is it important?

CHAPTER 5: AUTHORIZATION, AUTHENTICATI N, ACCOUNTABILITY, AND AVAILABILITY

O 5-33

8) What are the different views on NR, and what is the best way to resolve these
issues?

9) Why is availability important in the context of security? How can FRS schemes help
in increasing the overall security of a system?

	Authorization, Authentication, Accountability, an
	Introduction
	Authentication
	Overview
	IDs and Passwords
	Token Cards: Secure ID, Smart Cards, and Java Rings
	Biometrics: Fingerprints, Eye Scans, and Speech Recognition
	Using Cryptography for Authentication – Digital S
	Digital Certificates for Authentication
	Using Kerberos for Authentication
	Single Signon (SSO) Systems

	Authorization and Intrusion Detection
	Authorization and Access Controls
	Intrusion Detection
	Real-time Intrusion Detection Systems (IDSs)
	Data Mining for Intrusion Detection

	Accountability and Non-Repudiation
	Overview
	Non-Repudiation – The Legal Meaning
	Non-Repudiation – The Crypto-Technical Meaning
	Technical Vulnerabilities for NR in Existing Systems
	Technologies and Approaches for Non-Repudiation

	Availability and Intrusion Tolerance
	High Availability – Dealing With Natural and Deni
	Denial of Service Attacks
	High Availability, Fault Tolerance, and Intrusion Tolerance
	Replication as a Backbone for Increased Availability
	FRS (Fragmentation, Replication, Scattering)
	Fragmentation Considerations
	Scattering Considerations
	Combining FRS with Cryptography
	Special Considerations
	The Reality Check on FRS

	Short Case Studies and Examples
	Australian Agency Uses Digital Certificates to Sign Contract with Fujitsu
	How Computer-Savvy Investigators Operate
	City of Edmonton Upgrades Access Control

	Conclusions
	Suggested Review Questions

