

5 Distributed Object Technologies
(CORBA and DCOM)

5.1 DISTRIBUTED OBJECT TECHNOLOGIES OVERVIEW..5-2

5.1.1 Concepts ...5-2
5.1.2 Distributed Objects: From CORBA/DCOM to Web Services and J2EE..5-4
5.1.3 Interface Definition Languages (IDLs)...5-6
5.1.4 Components, Business Objects, and Object Frameworks..5-8

5.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)..5-10
5.2.1 Object Management Architecture ...5-10
5.2.2 Basic CORBA Concepts...5-13
5.2.3 CORBA Facilities..5-14
5.2.4 Using CORBA – An Example..5-17
5.2.5 Combining CORBA with Web and XML ..5-19
5.2.6 CORBA 3.0...5-20
5.2.7 CORBA Summary ..5-22

5.3 MICROSOFT’S DCOM (DISTRIBUTED COMPONENT OBJECT MODEL)...5-24
5.3.1 Overview...5-24
5.3.2 DCOM (Distributed Component Object Model) as an ORB...5-25
5.3.3 Web Browsers as Containers of ActiveX Components...5-27
5.3.4 ActiveX Controls -- Building Downloadable Web-based Components...5-27
5.3.5 ActiveX Server ..5-27
5.3.6 General Observations and Comments ..5-28

5.4 CORBA 3.0 -- THE LATEST CORBA..5-29
5.4.1 Evolution of CORBA..5-29
5.4.2 Locating CORBA Objects – The IOR (Interoperable Object Reference)......................................5-30
5.4.3 Object Adapters and POA (Portable Object Adapters) ..5-31
5.4.4 Objects by Value...5-33
5.4.5 CORBA Messaging - Asynchronous Messaging and Quality of Service Control5-33
5.4.6 Minimum, Fault-Tolerant, and Real-Time CORBA – More Quality of service control...............5-34
5.4.7 Event/Notification Services..5-35
5.4.8 Internet integration ..5-38
5.4.9 Inter-ORB Architecture (GIOP and IIOP) ...5-38
5.4.10 CORBAComponents Package...5-40
5.4.11 CORBA Scripting...5-41
5.4.12 CORBA 3.0: Conclusions ..5-41
5.4.13 Other OMG Activities ..5-41

5.5 CORBA OPERABILITY (PERFORMANCE, SCALBILITY, FAULT TOLERANCE) AND SUMMARY..............5-42
5.5.1 CORBA Reality Check -- Operability (Performance, Scalbility, Fault Tolerance) Issues...........5-42
5.5.2 CORBA Summary ..5-44

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-2

5.6 A DETAILED CORBA EXAMPLE ..5-46
5.6.1 Overview...5-46
5.6.2 Create CORBA Definitions..5-47
5.6.3 Build the Server..5-49
5.6.4 Build Client (Static Invocation)...5-50
5.6.5 Building a Client (Dynamic Invocation)...5-51

5.7 SUMMARY..5-52

5.1 Distributed Object Technologies Overview

5.1.1 Concepts

Most of the new applications developed at present are based on the OO concepts. In addition, many
legacy applications are being “wrapped” so that they appear as objects to the outside world. However,
rarely, if ever, all objects of an application reside on the same machine. It is common to find that the
objects of an application will be dispersed on multiple machines. A distributed application can be
viewed as a collection of objects (user interfaces, databases, application modules, customers). Each
object has its own attributes, and has some methods which define the behavior of the object (e.g., an
order can be viewed in terms of its data and the methods which create, delete and update the order
object). Interactions between the components of an application can be modeled through "messages"
which invoke appropriate methods. In particular, classes and inheritance are extremely useful in
modeling applications because these concepts lead to reuse and encapsulation - critical to managing
the complexity of distributed systems. For example:

 A customer is defined as a class from which other business classes that define different types of
customers can inherit properties.

 An inventory is defined as a class from which other properties of specific inventory items can be
inherited.

 A database server is defined as a class from which other vendor specific database servers can
inherit properties.

 A network is defined as a class from which other networks inherit properties (e.g., a generic
network from which local and wide area networks can inherit properties).

Objects, wherever they reside, are data that can be accessed through methods and support properties
such as inheritance, polymorphism, encapsulation, etc. Objects can be clients, servers, or both (see
Appendix B for a tutorial on object-oriented concepts). It is quite easy to access a local object in current
OO programming languages such as Java and C++. All you need to do is issue the following
statement:

Object.method (parameters)

For example, consider the following object:

Object Name = invoice
Attributes = customer name, items purchased, price per item, total invoice, etc.
Methods = prepare, send, review status, update status

To prepare an invoice, we say invoice.prepare (parameters for invoice preparation), and to send an
invoice, we say, invoice.send (parameters for sending), etc (we are overlooking a few programming
details). The “dot” between object name and the method name is of key importance because it tells the
compiler to invoke the method of a given object. How can you invoke a method (with associated
parameters) on a remotely located object? For example, how can you prepare an invoice object if that
object is on a Unix machine in another building? The following fundamental questions arise:

 How can you find (locate) the invoice object in the network?

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-3

 How can you send it a message to invoke the “prepare” method?
 How can you pass the needed parameters?
 How can you hide the complexity and heterogeneity of distributed systems from applications?
 How can you recover from the errors?

The distributed object middleware such as CORBA provides answers to these and several other
related questions. Before getting involved with details about objects in distributed systems, let us
quickly review some of the major concepts. Figure 5-1 shows a conceptual view that will be expanded
and refined later. It consists of the following players that are common to all distributed object
technologies:

 Distributed Objects: Application objects behave as clients, servers, or both.
 IDL: Objects define their services through an Interface Definition Language (IDL) that specifies the

operations to be performed by remote objects. As we will see, CORBA, DCOM, J2EE, .NET, and
Web Services all support IDLs.

 Directories: Object advertise their services through a directory that keeps the IDLs of all
operations. Directories serve as “yellow pages” for the objects. As we will also see, CORBA,
DCOM, J2EE, .NET, and Web Services all use directories to locate objects.

 Object Brokers: Object brokers allow objects to find each other in a distributed environment and
interact with each other over a network. Object brokers are the backbone of distributed object-
oriented systems. They essentially provide the “dot” between the object and method in distributed
environments. As we will see, CORBA and DCOM use special brokers but .NET and Web
Services use the Internet as a broker.

 Object Services: These services allow the users to create, name, move, copy, store, delete,
restore, and manage objects. As we will see, CORBA and DCOM use special object services but
.NET and Web Services use the Internet Services, as much as possible, for this purpose.

 Object Invocation Protocols. Protocols are needed by the brokers to access and invoke objects.
As we will see, CORBA and DCOM use special protocols such as IIOP but .NET and Web
Services use the Internet protocols such as HTTP for this purpose.

Table 5-1 illustrates the distributed object technologies used in CORBA and Web services. Inclusion of
other distributed object technologies (DCOM, J2EE, .NET) to this table is left as an exercise for the
reader. Keep in mind that modeling in terms of object-oriented (OO) concepts does not necessarily
imply use of object-oriented programming languages such as C++ or object-oriented database
managers. It is possible to view systems in terms of OO objects and then implement them in whatever
technology makes sense. For example, most systems at present view data as objects but implement
the data by using relational databases.

Client Objects Server Objects

Object Services

Object Request Broker

IDLIDL

Figure 5-1: The Basic Distributed Objects Model

Due to the interest in object-oriented systems, the elegance with which complex distributed systems
can be modeled by using OO concepts, and the appeal of OO technologies in developing new
applications ranging from inventory control to network management, many attempts have focused on
standardized middleware to support object-oriented distributed systems. The Common Object Request
Broker Architecture (CORBA) from the Object Management Group is a prime example of such a
standard.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-4

Table 5-1: Distributed Objects in CORBA and Web Services

 CORBA Web Services

Distributed Objects CORBA Objects Web Services Components

IDL CORBA IDL WSDL

Directory CORBA Naming Services UDDI

Object Broker Object Request Broker Internet

Object Services CORBA Services Web and Internet services such
as DNS

Object Invocation Protocol IIOP HTTP, SOAP

5.1.2 Distributed Objects: From CORBA/DCOM to Web Services and J2EE

The trend at present is to extend the OO concepts to enterprise-wide distributed applications. Simply
stated, distributed objects are objects dispersed across the network and accessed by users.
Conceptually, we are talking about decomposing enterprise-wide applications into objects that can be
dispersed around different machines on a network. An object on one machine can send messages to
objects on other machines, thus viewing the entire network as a collection of objects. When, and if, fully
realized distributed objects present a very powerful technology that has the potential of addressing
many problems that have plagued the IT community for years (i.e., reuse, portability and
interoperability). This is because applications constructed using reusable components that encapsulate
many internal details interoperate across multiple networks and platforms.

Support of distributed object-based applications requires special purpose middleware that will allow
remotely located objects to communicate with each other. A common mechanism used by such
middleware is an object request broker (ORB) that receives an object invocation and delivers the
message to an appropriate object. Examples of middleware for distributed objects include OMG's
CORBA (Common Object Request Broker Architecture), DCOM (Distributed Computing Object Model)
from Microsoft, and RMI (Remote Method Invocation) from Sun. Although, the exact implementations
vary (as we will see), they all follow the conceptual view presented in Figure 5-2:

 Each remote object that wishes to provide a service defines its services through an IDL (Interface
Definition Language). For example, purchasing and inventory are server objects advertising their
services. Each server object specifies its service through an IDL (Interface Definition Language).

 The object request broker (ORB) is the main bus that connects object clients to the object servers.
 The clients use the ORB to locate and invoke needed services. The client uses IDL to invoke a

service. For example, the client will use IDL1 for purchasing and IDL2 for inventory checking.
While object-orientation is quite fashionable, the attention has lately shifted to “components” and
“business objects” that are large objects containing business functionalities. One of the main reasons
for attention to component-based systems is that component-based platforms are commercially
available at present. Examples of such platforms are Sun J2EE and Microsoft .NET that we will review
later in this chapter (for more information about J2EE and .NET, see the Web sites (www.sun.com) and
(http://msdn.microsoft.com), respectively). Figure 5-3 shows a conceptual component-based
architecture platform that is a generalization of the Sun J2EE environment and the Microsoft .NET
environment. The component-based architecture is composed of several components that can exist at
the following tiers:

 Client-tier components run on the client machine.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-5

 Web-tier components run on the Web server to provide server side support.
 Business-tier components run on the business tier and are the “business components” (we will

discuss business components later).
 Enterprise system tier software runs on the back-end systems.

These component-based architectures, as we will see, use the distributed object middleware
technologies such as IDLs.

Object Request Broker

Client

Object Services:
Directory,
Security,

Transaction,
Life Cycle,...

Purchasing
Application

(C++)

Inventory
Application

(Cobol)
IDL1 IDL2IDL1 IDL2

Purchase Check
Inventory

Figure 5-2: Conceptual view of Distributed Object Middleware

WebWeb
TierTier

WebWeb
ContainerContainer

ClientClient
TierTier

EnterpriseEnterprise
Information Information

SystemsSystems
(Corporate (Corporate
databases, databases,

ERPsERPs,,
LegacyLegacy

Applications)Applications)

BusinessBusiness
TierTier

ClientClient
componentcomponent
(Non-Web)(Non-Web)

EnterpriseEnterprise
TierTier

EnterpriseEnterprise
ComponentComponent

EnterpriseEnterprise
ComponentComponent

Firewall

Front-end

Application
Server

Back-end

Enterprise
Component
 Container

ClientClient
componentcomponent
(Applet)(Applet)

ClientClient
componentcomponent
(Applet)(Applet)

ClientClient
componentcomponent
(Non-Web)(Non-Web)

WebWeb
ComponentComponent
((ServletServlet))

WebWeb
ComponentComponent
(JSP)(JSP)

Figure 5-3: A Generalized Component-based Architecture

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-6

5.1.3 Interface Definition Languages (IDLs)

5.1.3.1 Interfaces and Interface Definition Language
Interfaces and interface definition languages (IDLs) are at the core of distributed object applications,
including the new component-based applications. Simply stated, an interface specifies the API that the
clients can use to invoke operations on objects. In particular, an interface describes:

 The set of operations that can be performed on an object.
 The parameters needed to perform the operations.

For distributed object applications, interface definitions are used to advertise the set of operations that
an object can provide to prospective clients. Thus, the object's data is accessible only through the
interface. Consequently, any server that is encapsulated by its interface can be viewed as an object.
Figure 5-4 shows an interface of a simple inventory object that supports two operations: query
inventory and update price (a definition of this interface is given in Table 5-2). These operations can be
invoked by client programs.

Interface: Inventory
Operation: Query_inventory
Operation: Update_price

Server Code to support the
operations specified in the
interface.
•Query_inventory code
 …...
•Update_price code
 …….

Connect to Inventory

Query_inventory

Connect to Inventory

Update_price

Clients Server

Figure 5-4: Example of an Interface

One or more interfaces may be defined for an object. For example, given an object such as inventory,
you may need to define three different interfaces: one for the manager of inventory (i.e., to create,
monitor and replenish the inventory), one for the order processing system (i.e., to retrieve and update
the inventory), and one for the authorized customers (i.e., to browse through the available products). It
is a good practice to design interfaces for different classes of users and to group related operations
together. An interface definition includes some or all of the following:

 The interface header that shows an interface name and interface header attributes that uniquely
identify the interface. Examples of such attributes are UUIDs (universal unique identifiers) and
version numbers of the interfaces.

 Constant and data type definitions that are used to specify data properties (e.g., size) so that
clients and servers can exchange data conveniently between different machines.

 A set of operations (methods) and the signatures for each operation. A signature specifies the
operation's name, it's arguments, and argument types.

The interfaces are defined by using an interface definition language (IDL). Different middleware
products provide IDL compilers that parse the IDL and produce header files and code segments that
are used by the client and server programs (we will discuss this in more detail later). For example,
CORBA, DCOM, and RMI all provide IDL compilers. In addition, middleware products support utilities
and commands to store and retrieve IDLs from interface repositories. Client application developers can
browse through these interface repositories to learn about the available server objects and determine
the type of operations that can be invoked on an object.

IDLs are declarative languages -- they do not specify any executable code. IDL declarations (e.g.,
syntax, character types allowed, argument coding, etc.) must conform to the vendor provided IDL
compilers. After you create the interface definition using IDL, you compile the IDL file to create header

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-7

files and "stubs" that are used in building clients and servers. Table 5-2 shows the IDL of a simple
inventory system that supports query inventory and update price operations. The syntax used in this
example is abstract. We will see actual IDL specifications for CORBA later on in this chapter.

Table 5-2: A Sample Abstract IDL

uuid 008B3C84-11c7-8580), version (1.0) /* Header */
interface inventory /* interface name is inventory */

query_inventory (/*The operation to query inventory */

in char item_id; /* input is item id */

out integer on_hand; /output is on hand */

out integer status) /* output status */

update_price (/*The operation is to update price */

in char item_id; /* input parameter is item -id */

in integer new_price; /* input: new price */

out integer status) /*output parameter */

5.1.3.2 Types of Interfaces
Interfaces and interface definitions are of two kinds: operational interfaces which contain a set of
named operations (i.e., procedures or methods); and stream interfaces, in which communication is
organized as a set of linked directional flows. This chapter will focus primarily on operational interfaces.
Stream interfaces are used to support distributed multimedia systems. Stream interfaces are used to
describe unstructured communications such as voice and video streams in multimedia systems.
Stream interfaces can also be used for electronic mail. The basic characteristic of stream interfaces is
that they must support continuous data transfers over relatively long periods of time, e.g., real-time
playout of video from a remote surveillance camera. In addition, the timeliness of such transmissions
must be maintained for the duration of the media presentation. We will pick up the discussion of stream
interfaces in a later chapter when we discuss distributed multimedia applications.

Interfaces significantly impact the design of distributed object applications. First, the server object is
required to implement at least the operations specified in the IDL, and the client is required to accept at
least the set of results generated by the IDL operations. This implies that the server will never respond
with a "method/procedure not supported" message to a prospectus client. Second, the clients may not
use some of the operations provided by the interface. This implies that the server interfaces can be
extended to include more operations without requiring any change to the client. Finally, and most
importantly, the "size" of the interface needs to be carefully examined. For example, it is not a good
idea to specify an interface that supports 100 operations. In such a case, if one operation needs to be
changed, then a new IDL will have to be compiled and all client programs will have to be recompiled
(this could be quite irritating). It is best to design a separate interface for each group of users (e.g., one
interface for end users, one for the system administrators, etc.).

Interfaces and IDL provide the basic glue for distributed object computing. IDL is used not only to define
new services provided by objects, but also to "wrap" existing and legacy systems so that they behave
externally as objects. For example, a legacy application written in Cobol could behave as a server
object as long as it has an IDL and it provides the operations defined by the IDL. Thus, the "IDL-ized"

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-8

programs run on top of an ORB without revealing their internal details and work with CORBA gateways
to work with non-CORBA systems (see Figure 5-5).

Object Request Broker

Client

Object Services:
Directory,
Security,

Transaction,
Life Cycle,...

Purchasing
Application

(C++)

Inventory
Application

(Cobol)
IDL1 IDL2IDL1 IDL2

Purchase Check
Inventory

Supplier1 Supplier2

CORBA
Gateway

CORBA Gateways convert CORBA calls to non-CORBA

CORBA
Gateway

Figure 5-5: Interface Definition Language (IDL) in Action

5.1.4 Components, Business Objects, and Object Frameworks

A very wide range of OO products are commercially available from a diverse array of suppliers. The
following three are the most significant because they are at the foundation of J2EE and .NET:

 Components
 Business Objects (business components)
 Object Frameworks

Components and “Applets”: Components are high-level “plug and play” software modules that
perform a limited set of tasks within an application. Components are essentially objects, also known as
“applets”, that are recognizable by the users as small applications (i.e., they do not perform internal
programming tasks such as initialize internal memory locations). For example, Microsoft Draw is an
applet within Microsoft applications. This particular component is high level enough to perform end-user
type functions (it draws boxes, arrows, circles, etc.). However, it is not a stand-alone application, it only
works with other applications components. Microsoft has many software components for Windows
environments that draw, produce charts, perform calculations, etc. Depending on the size of the
application, the components may be small or large. Components are very much like objects; however,
the emphasis is on recognition by users (many objects are oriented towards programming tasks). Thus,
component software can be used as plug and play to build complete applications. Many desktop tools
are currently becoming available as components. Examples of typical desktop components are spell—
checkers, SQL query builders, print managers (conceptually, each icon on your toolbar can be a
separate component).

Business Objects (Business Components): The basic idea of business objects, also known as
business components, is that the users can construct large objects that represent the real-world
concepts of the business world. Examples of business objects are customer, order, products, and

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-9

regional office. Business components are larger than components -- components can represent a clock
or a calendar but a business component can represent an inventory system. If software could be
structured around such objects and other business concepts, then organizations would be able to build
software that simulated current business strategy. Moreover, businesses could reuse these objects to
build new applications by using the OO paradigm. Business objects started appearing in the
marketplace around 1994 when OLE 2.0, OpenDoc, and CORBA-based products started emerging.
Since then, OO tools designed to support creation of business objects have appeared from vendors
such as Easel and applications that employ business objects have appeared from Sun, IBM, and
Microsoft. Business components are at the foundation of "Business Component Factory" [Herzum
2000]. We will discuss business objects in detail in the Architecture Module.

Object Frameworks: Object frameworks are essentially descendents of object-oriented class libraries.
Class libraries are collections of predefined object classes that define commonly used presentation,
business processing logic, and data management structures and methods. A framework simply defines
how given sets of classes are related and arranged for different applications. It is possible to think of
frameworks at three levels: foundation classes, middleware frameworks, and application frameworks
(or high level frameworks). The foundation classes provide fine-grained data and control statements,
I/O functions, GUI structures, memory management functions, and database access functions. The
middleware framework covers an extensive set of C/S middleware services such as transaction
processing, database access, directory services, telephony, authentication and systems management.
The application frameworks, also known as desktop frameworks, provide programmer productivity tools
for compound documents, multimedia, groupware, mail, 3D graphics, and decision support
applications. An example of commercial object frameworks is the IBM and Taligent object frameworks
strategy that is beginning to materialize as products. The objective of this strategy is to create “seas of
objects” with object frameworks as the glue to tie these objects into applications. Examples of other
players in this market are ParcPlace Systems, Rogue Wave, ILOG, Next, Sun Microsystems, Easel,
and others.

These, and other emerging technologies and market segments are leading towards reusable software
that can be assembled to quickly build new applications. However, these technologies are introducing
new terms and jargon. Due to an ever-growing list of object-oriented “things”, many groups are trying to
figure out what to do. An example is the Object Management Group (OMG) that has been formed as a
non-profit consortium of more than 500 software and systems manufacturers and technology
information providers. OMG is specifying a set of standard terms and interfaces for interoperable
software by using the object oriented concepts.

Object-Oriented Databases
Object-oriented databases allow storage and retrieval of objects to/from persistent storage (i.e., disks).
Object-oriented databases, also known as object databases, allow you to store and retrieve non
traditional data types such as bitmaps, icons, text, polygons, sets, arrays, and lists. The stored objects
can be simple or complex, can be related to each other through complex relationships, and can inherit
properties from other objects. Object-oriented database management systems (OODBMS), which can
store, retrieve and manipulate objects, have been an area of active research and exploration since the
mid 1980s.

Relational databases are suitable for many applications and SQL use is widespread. However, it is not
easy to represent complex information in terms of relational tables. For example, a car design, a
computing network layout, and software design of an airline reservation system cannot be represented
easily in terms of tables. For these cases, we need to represent complex interrelationships between
data elements, retrieve several versions of design, represent the semantics (meaning) of relationships,
and utilize the concepts of similarities to reduce redundancies.

OODBMSs and RDBMSs both have their strengths and weaknesses. For example, RDBMSs are very
mature and heavily used but cannot handle complex objects well. OODBMSs, on the other hand lack

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-10

the maturity and ease of use offered by the RDBMSs. A compromise, known as Object-Relational
Databases, provides a hybrid solution where relational and object-oriented technologies are combined
into a single product. Different vendors use different approaches to Object-Relational Databases. For
example, Odaptor from HP uses an underlying relational database with OO front-ends while UniSQL
from UniSQL is an OO database that subsumes the relational model.

Time to Take a Break
• Distributed Object Technologies
• CORBA and DCOM
• Web Services, .NET, J2EE
• SOAP and EJBs

Suggested Review Questions Before Proceeding
 What are distributed object technologies and why are they important?
 What are the unique features of distributed objects that cannot be found in simple client/server

systems?
 What is the role of IDL in distributed object technologies?
 What are the common features of all distributed object technologies?
 What are components and how are they different from objects?

5.2 Common Object Request Broker Architecture (CORBA)

5.2.1 Object Management Architecture

Common Object Request Broker Architecture (CORBA) is a specification proposed by the Object
Management Group (OMG) - a non-profit industry consortium formed in 1989 by eight companies with
the following goals [Soley 1994]:

 Solve problems of interoperability in distributed systems by using object technology.
 Use de facto standards in object technology and commercial availability of technology.
 Create a suite of standard languages, interfaces and protocols for interoperability of applications in

heterogeneous distributed environments.
 Build upon, not replace, existing interfaces.

HP, IBM and Sun were among the original eight members of OMG, which has exceeded more than
800 members ranging from hardware vendors to end users. Interestingly, OMG was formed before any
major products were introduced. Most standards bodies are formed to develop standards after products

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-11

are already in use. For example, ISO/OSI Reference Model for networks was introduced in 1977,
almost 5 to 7 years after the introduction of SNA, Decnet, and TCP/IP.

Keep in mind that OMG produces specifications, not implementations. Implementations of OMG
specifications can be found on over 50 operating systems. OMG solicits new specification proposals
through RFI (request for information) and RFP (request for submission) process. Like other standards
bodies, the proposals go through a formal evaluation, revision, review, recommendations and approval
process.

OMG's first attempt at meeting its goals resulted in an Object Management Architecture (OMA),
released in 1990 It was revised in 1992. OMA specified the overall object model for distributed object
computing environments, including how objects are defined and created, how client applications invoke
objects, and how objects can be shared and reused. The four components of this Management
Architecture are (see Figure 5-6):

 Application Objects: These are business- aware objects specific to end-user applications. These
objects can be pieces of data, software, and user artifacts that can reside on one or many
machines. The application objects may be created by an OO language or encapsulated by using a
"wrapper" around old systems. Applications are typically built from a large number of basic object
classes.

 Object Request Broker (ORB): ORB is responsible for communication between objects. ORB
finds an object on the network, delivers requests to the object, activates the object (if not already
active), and returns any messages back to the sender. ORB is the backbone of OMA. We will
discuss ORB in more detail later.

 Object Services: This component supports the request broker by providing services that almost
every object needs. These include basic services (finding and invoking objects), thread services
(create and manage threads), object life cycle services (create, destroy objects), and naming
services (facilitate portable names). Additional services such as event, trading, transactions, and
persistence have been added to CORBA services.

 Horizontal Facilities: These facilities were initially intended for common services such as user
interface, task management, and information management. Examples include e-mail, database
access, and compound. However, OMG has found that it was difficult to differentiate between
these and CORBA services. At present, OMG has given up on these services.

 Vertical (Domain) Facilities: These facilities define the object models and IDLs for a very wide
range of industry segments. This is one of the most active areas of OMG with work continuing in
domains such as finance, business objects, healthcare, manufacturing, electronic commerce,
telecommunications, transportation, and utilities.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-12

Non-standardized
application-specific interfaces

Vertical
domain-specific interfaces

Horizontal
facility interfaces

Application Objects Domain Objects CORBAfacilities

General service interfaces

CORBAservices

Object Request Broker

Figure 5-6: Object Management Architecture

It is important to note that the Application Objects, Vertical Facilities, and Object Services are simply
categories of objects. Every piece of software in the OMA model is represented as an object that
communicates with other objects via the Object Request Broker. These objects were grouped into
three broad categories to ease the standardization process.

It is perhaps appropriate at this point to briefly discuss the OMG organization and structure. As shown
in Figure 5-7, the OMG consists of an architecture board that oversees the developments of OMG, a
Platform Technology Committee that develops the ORB and the Object Services, as well as the
Domain Technology Committee that manages the growing vertical industries. Keep in mind that OMG,
although well known due to CORBA specification, is actively involved in all aspects of object
technologies. For example, OMG has specified the very popular UML (Universal Modeling Language)
that is used to represent the models throughout the development of object-oriented systems (see
Appendix B for more details on UML). OMG is also developing standards for business objects and
component technologies. The adoption process consists of following steps:

Step 1: RFI (Request for Information) to establish range of commercially available software.

Step 2: RFP (Request for Proposals) to gather explicit descriptions of available software. The
Architecture Board approves RFPs.

Step 3: Letters of Intent to establish corporate commitment from respondents to the RFPs (this
is to assure that the RFP respondents will commit resources to implement technologies).

Step 4: Task Force evaluation & recommendation of the RFPs. Depending on the submissions
and subject area, this may be a long, usually a year or more, process. There is also a
simultaneous evaluation by Business Committee.
Step 5: Architecture Board consideration for consistency.

Step 6: Board decision based on recommendations from the appropriate Technology
Committee & Business Committee.

A fast track process that bypasses some of the steps is also supported to introduce standards quickly.
More details about OMG can be found at www.omg.org.

It is perhaps appropriate to comment on OMG’s business model. OMG operates in a manner similar to
a “non-profit Microsoft” instead of the typical standards bodies such as ISO and ITU. Most CORBA
standards go into production within few years, sometimes months (as noted above, a submission to
OMG must be accompanied by a “letter of intent” stating the intention to develop a commercial

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-13

implementation of the standard within one year.) OMG standards rarely starve for vendor
implementations because it is a forum in which vendors ask users to set requirements, and users ask
vendors for new features.

Domain
Technology
Committee

Architecture
Board

Platform
Technology
Committee

• Policies & Procedures
• End-User Requirements
• Metrics
• Security
• Object/Reference Model

• ORB & Object Services
• Common Facilities
• Analysis & Design
• Real-Time

• Finance
• Business Objects
• Healthcare
• Manufacturing
• Electronic Commerce
• Telecommunications
• Transportation
• Utilities

Fast Growing...

Figure 5-7: OMG Organization

5.2.2 Basic CORBA Concepts

CORBA was introduced in 1991 by OMG to go a step beyond OMA to specify the technology for
interoperable distributed OO systems. CORBA specifications represent the ORB technology adopted
by OMG and are published as OMG documents.

The key concepts of CORBA are (see Figure 5-8):

 Any object can be a client, server or both. For purpose of description, CORBA uses the C/S model
where clients issue requests to server objects. The server objects are called “object
implementations” or “servants” because they are the implementations of the invoked object.

 An interface, described in the OMG/ISO IDL (Interface Definition Language), represents contracts
between client and server objects. The IDL shows the methods and the parameters being passed
through the interface and is the only means of communication between clients and server objects.
CORBA requires that every object’s interface be represented in OMG IDL. Clients only see the
object’s interface, never it’s implementation. Thus, as long as the interface is the same, you can
substitute another implementation of the object – this is intended for plug and play. Program stubs
and skeletons are produced as part of the IDL compiling.

 CORBA essentially specifies the middleware services that are used by the objects. A key part of
this middleware is devoted to locating a server object, invoking the needed method on the object
and returning results. A variety of other services such as naming, threading, lifecycle and event
services are also provided.

 All interactions between CORBA objects are mediated by the ORB – clients cannot invoke server
objects directly and server objects cannot respond to the clients directly. This requirement transfers
all responsibilities to the ORB. Thus, ORB is the “Master. It finds the objects you need, wakes them
up, gets them to work on your behalf to produce the results you need, and delivers the results back
to you. In addition, if there is a failure, ORB is responsible for failure recovery. ORBs also hide the
underlying implementation and system heterogeneity details. What a life it would be without ORBs!

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-14

••Bind, I.e. find the object (2)Bind, I.e. find the object (2)
••Invoke the object (3)Invoke the object (3)

••Advertise object (1)Advertise object (1)
••Receive Calls(4)Receive Calls(4)
••Return (5)Return (5)

CORBA Client CORBA Server (“Servant”)

 ORB and CORBA Services ORB and CORBA Services
••Basic services (finding and invoking objects)Basic services (finding and invoking objects)
••Thread services (create and manage threads)Thread services (create and manage threads)
••Object life cycle services (create, destroy objects) Object life cycle services (create, destroy objects)
••Naming services (facilitate portable names)Naming services (facilitate portable names)
••Others: Event, Trading, transactions, Persistence,, Others: Event, Trading, transactions, Persistence,,

 IDL
Mediated
Method Invocation

M
iddlew

are

 IDL

Figure 5-8: A Simple Example of CORBA

Let us now go through a simple flow of Figure 5-8 (we will discuss variants of this model later). First, the
server object’s interface has to be defined in IDL and the client has to write the code that invokes the
server object through this IDL. At run-time, the following steps take place (the step numbers are
indicated in the Figure):

1. The server object is started (this is one of the many options as we will see later). It advertises its
availability to the ORB that records in its directory the location of the object. The server object then
indicates that it is ready to receive calls and waits.

2. The client object issues a “bind” command for the server object (i.e., find server object). The ORB
receives this call, locates the server object and returns an object reference to the client.

3. The client uses this object reference to issue the actual call to the server object.

4. The ORB passes this request to the server object that receives the request and processes it.

5. The server object returns the results to the client through the ORB.
The ORB invokes the various services to accomplish this interaction – more about it later.

5.2.3 CORBA Facilities

As defined by the OMG, the ORB provides mechanisms by which objects transparently interact with
each other. It enables the objects to establish connections, communicate with one another, make
requests, and receive responses. To achieve this, ORB sets up communications links and routes
information between objects as needed. It literally provides brokerage services between clients and
servers by determining the most efficient way for a client to receive a service and for a server to provide
the service. The interfaces to the ORB and the interfaces to the objects built using the ORB are well
defined. The underlying implementation of the ORB is not important to the developers building
distributed object-oriented applications. Different interfaces can be defined for an object and multiple
ORBs can exist in a system. Thus, different client applications can refer to the same object residing on
a server but each client application can be given its own interface.

Figure 5-9 shows the architectural components of CORBA and the interfaces/flows between various
components. The arrows indicate whether the ORB is called or performs an up-call across the
interface. Before discussing the components, let us review some underlying concepts:

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-15

 OMG Interface Definition Language (IDL): CORBA is built around a single object model
embodied in IDL and uses a single specification language, the OMG Interface Definition Language
(IDL), to specify the services provided by an object. The parameters needed for each task are
specified and compiled using an IDL compiler. Once again, IDL is pure specification, not
implementation and enables platform independence. The OMG IDL standard has been stable
since 1991. OMG IDL syntax resembles C++. IDL compilers are provided by vendors. CORBA
API is also defined in IDL. The IDL itself does not say anything about implementation of an
interface, however all CORBA products generate bindings in languages such as Java, C, C++, and
Smalltalk. IDL definitions are stored in a public interface directory. Access to this repository can be
controlled through access control lists (ACLs). CORBA also specifies language bindings, i.e.,
mapping of IDL constructs to programming languages.

 Synchronous and Asynchronous Support: CORBA ORBs initially supported synchronous (i.e.,
client process is blocked until a reply from the server process is received by the client process) as
well as delayed synchronous (i.e., the client process continues work after initiating a request and
periodically polls the ORB for the response) communications. The delayed asynchronous model
was not used very heavily because it was associated with dynamic binding – a nice but rarely used
facility of CORBA (see below). CORBA 3.0 includes messaging services that support a variety of
asynchronous communications. CORBA 3.0 also supports publish/subscribe model through its
event/notification services. We will discuss CORBA 3.0 in Section 5.4. The applications can use
synchronous, asynchronous, or publish/subscribe approach depending on application
requirements.

 Static Versus Dynamic Binding: CORBA ORBs allow static as well as dynamic binding between
objects. Dynamic binding between objects uses run-time identification of objects and parameters.
In one sense, the static and dynamic binding of CORBA is similar to the static and dynamic binding
used by SQL. From a developer's point of view, each serves the same purpose (i.e., establishes a
link between a client and server object for invoking an operation). However, a developer chooses
between these two options depending on how much information is available at compile time. The
static binding between objects is based on compile time specification of objects and parameters.
Static binding, initially proposed by HP and Sun, is more efficient at run-time because all needed
libraries are included at compile time. It is also quite simple (a C call with parameters which specify
the object to be invoked, the environment of the object, and any other values needed by the server
object). On the other hand, dynamic binding between objects uses run-time identification of objects
and parameters. Dynamic binding, initially proposed by DEC (Digital Equipment Corp.), incurs
more overhead at run-time but is very flexible (it can be used when some of the information
needed to complete an operation is not available at compile time). Dynamic binding needs
extensive run time support (i.e. a repository that can be accessed at run time to locate objects). It is
particularly useful for applications that are undergoing rapid changes or for a tool to support
interactive browsing. The client can use the Dynamic Invocation interface or an IDL stub
(determined at compile time).
Editorial comment about dynamic binding: Dynamic binding, although quite appealing in concept
has been used very rarely in real life situations. Due to its low use, Minimal CORBA, (a skinny
version of CORBA for small applications) has excluded the dynamic feature.

 General Inter-ORB Protocol (GIOP) and IIOP (Internet Inter-ORB Protocol): The GIOP is
specially designed for ORB-to-ORB communications. It is intended to operate over any connection-
oriented transport protocol. Many mappings of GIOP have been specified. The best known is the
Internet Inter-ORB Protocol (IIOP) that specifies how GIOP messages are exchanged over a
TCP/IP network. IIOP allows a lightweight implementation of CORBA so that CORBA can operate
directly on top of TCP/IP and is a required feature of current CORBA implementations.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-16

ObjectObject
ImplementationImplementation

(Servant)(Servant)

InterfaceInterface
RepositoryRepository

ImplementationImplementation
RepositoryRepository

Client 1Client 1Client 1

Object Request Broker CoreObject Request Broker Core

DynamicDynamic
InvocationInvocation

Client IDLClient IDL
StubsStubsClient IDLClient IDL

StubsStubsClient IDLClient IDL
StubsStubs

ORBORB
InterfaceInterface

ObjectObject
AdapterAdapter

StaticStatic
SkeletonsSkeletonsStaticStatic

SkeletonsSkeletonsDynamicDynamic
SkeletonSkeleton

InvocationInvocation
StaticStatic

SkeletonsSkeletons

Client 2Client 2Client 2

Figure 5-9: CORBA Architectural Components

Let us now go through the CORBA architectural components shown in Figure 5-9 and discuss how
they interrelate with each other. Let us start from the left.

Interface Repository: A dynamic representation of available object interfaces is provided in an
Interface Repository. This repository represents the interfaces (or classes) of all objects in the
distributed environment. The clients access the Interface Repository to learn about the server objects
and determine what type of operations can be invoked on an object. With CORBA 2.0, the Interface
Repositories provide global identifiers to uniquely and globally identify a component and its interface
across multivendor ORBs. This is accomplished through repository IDs. A repository ID is a unique,
system-generated, string that is used across Interface Repositories. You can generate repository IDs
by using the DCE Universal Unique Identifiers (UUIDs) or via a user-supplied unique prefix that is
appended to IDL generated names.

Dynamic Invocation Interface (DII): This interface allows dynamic construction of object invocation.
The interface details are filled in by consulting with the Interface Repository and or other run-time
sources. By using the dynamic invocation, Client Application 1 can interact with Server Objects
(provided descriptions of these Server Objects could be found in the Interface Repository). This
component is rarely used.

Client IDL Stubs: The Client stubs make calls to the ORB Core. These precompiled stubs make it
easier for the Clients to issue static requests to objects across a network. Client Application 2 uses this
option.

ORB Interface: This interface goes directly to the ORB for operations that are common across all
objects. This interface consists of a few APIs to local services that may be of interest to some
applications. This interface is commonly used by a server object to tell the ORB that it is running and
ready to accept calls. The client can also directly interact with the ORB for operations through this
interface.

Object Adapters: An object adapter is essentially a scheduler that mediates between the ORB and the
object implementations (“servants”). It is responsible for a) generating object references for the called
servants, b) activation and de-activation of servants, and c) sending requests to servants. CORBA
specifies that each ORB must support a standard adapter called the Basic Object Adapter (BOA).
However, BOA was not well specified. To address these issues, CORBA 3.0 has introduced POA
(Portable Object Adapter). We will discuss POA in Section 5.4.

Server IDL Stub: These stubs, also known as server skeletons, provide the code that invokes specific
server methods. These stubs are generated as part of the IDL compilation and are very similar to the

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-17

client IDL stubs. They provide the interface between object adapters and the server application code.
Server Objects use this stub.

Dynamic Skeleton Interface (DSI): The DSI, introduced in later versions of CORBA (CORBA 2.0),
provides a run-time binding for servers that do not have IDL generated stubs. These dynamic skeletons
can be very useful for scripting languages to dynamically generate server objects. When invoked, the
DSI determines the server object to be invoked and the method to be invoked (the selection is based
on parameters values supplied by an incoming message). In contrast, the server skeletons generated
through compiled IDL are defined for a certain object class and expect a method implementation for
each method specified in the IDL. The DSI can receive calls from static or dynamic client invocations.

Object Request Broker (ORB): ORB is obviously at the heart of CORBA. ORB acts as a switch in a
CORBA environment — it sets up links between remote objects and routes the messages between
objects. Any client object can make a request from a server object through the ORB and any server
object can send responses back to the client objects through ORB. We will discuss ORB in more detail
in the next section.

Implementation Repository: Implementation details of each interface, including the operating system
specific information used for invocation, the attributes used for method selection, and the methods that
make up the implementation are loaded into the Implementation Repository. The Implementation
Repository can be implemented differently by different vendors. Some implementations of CORBA
support IML (implementation mapping language) to describe the implementation details.

5.2.4 Using CORBA – An Example

Let us quickly review the overall process used in building CORBA applications to illustrate the key
concepts. A more detailed example with code samples is given in Section ???). The activities involved
in developing OO applications in CORBA environments involve the following major activities (see
Figure 5-10):

 Create Interface definitions by using OMG IDL.
 Build the server (Object Implementation).
 Build the client application(s).
 Deploy the application.

Create CORBA Definitions: The main activity in this step is the creation of interface definitions in the
CORBA IDL format by using a text editor. The IDL statements are compiled by using an IDL compiler.
The IDL definitions can be kept in text files or stored in an Interface Repository so that the clients can
learn about the server objects and determine what type of operations can be invoked on an object. As
stated previously, the interface of an object is used to declare the operations supported by an object. It
consists of a collection of the operations and their signatures, i.e., the operation's name, it's arguments,
and argument types. For example, the following statements specify the interface for a bank account
object in CORBA IDL (we have simplified it somewhat for illustrative purposes):

interface bank_account_interf /* interface name is bank_account_interf */
make_deposit (/*The operation is make_deposit */
in integer amount_deposited; /* input is amount_deposited represented as an integer */
in integer account_no; /* input is account_no */
out integer current_balalnce) /* output parameter is current_balalnce */
make-withdrawal (/*Operation is make-withdrawal */
in integer amount_withdrawn; /* input is amount_withdrawn */
in integer account_no; /* input is account_no */
out integer current_balalnce) /* output parameter is current_balalnce */

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-18

1. Interface definition
in IDL

IDL
Compiler

Stub
class

Skeleton
class

Other support
classes

3. Client
Development.

2. Server (Object
Implementation)

Language
Compiler

(C++, Java)

Client
Code

Server
Code

Figure 5-10: CORBA Application Development

The interface statement shows what operations can be performed on the order object. Each interface
statement defines an interface and contains the descriptions of the operations (operation signatures).

In addition to IDL, the implementation details of each interface are created. You can use CORBA
commands to generate a default implementation description from the interface definition. These
implementations are loaded into the Implementation Repository.

After you create the interface definition using IDL, you compile the IDL file to create two very important
components for building your application: the client stub and the server skeleton. The client stub and
server skeleton are the code templates for building CORBA client and server programs (see Figure
7.8). The client stub is used only to build client programs that use static binding, i.e., the client code is
linked with the client stub to form the client application. The client stub is not used to build client
programs that use dynamic invocation. The server skeleton is always used as the framework for
building the server application, regardless of the invocation type used by the client.

Build the Server (Implement the Object): CORBA servers can be quite complex and diverse.
Building of the program servers requires the following steps:

 Generation of server skeletons - The IDL statements are compiled to generate a server skeleton.
This compilation also uses the information contained in the IML files. The server skeleton contains
method templates that show entry points for all of the implementation methods. The server
skeleton also contains the server dispatcher code that makes the implementations and the
methods known to the ORB (the dispatcher is called by the Basic Object Adapter). A registration
routine is also generated as part of the server code (this routine is called at server start-up).

 Develop server initialization code - Each server initialization needs code to register the
implementation, activate the server's implementation, enter a main loop to receive requests, and
exit after un-registering and releasing resources. In addition, the server needs routines for creating
objects and managing references to these objects. The server skeleton is used to develop this
code.

 Develop the methods - The major activity in building a CORBA server is to write the code for the
methods that execute the operations. For each method template, you must create the code for the
methods. Methods can be implemented as executable code, calls to legacy applications, or scripts
to integrate command line interfaces with existing applications.

Build Clients (Static): After a server has been built and registered, clients can be built to invoke the
servers. As stated previously, CORBA clients use static invocations (i.e., clients know at compile time
the objects and the operations on these objects) or dynamic invocation (i.e., the clients determine at

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-19

run-time the objects and the operations on these objects). We only discuss static invocation here. The
main steps involved in building a static invocation CORBA client are a) generate client stub from IDL or
from the interface repository, b) build the client code, and c) compile and link the client.

Deploy and Run the Application: CORBA applications can be packaged and shipped as server only,
client only or a collection of clients and servers. To accomplish this, you need to send your IDL,
implementation specifications, in addition to the executables. The application is installed and used in a
CORBA run-time environment (see Figure 5-11). The IDLs and IML are loaded into the Interface and
Implementation Repositories first. Then, the server is installed. At server start-up, it registers itself so
that the invoking clients can locate it. The Dynamic Invocation Interface allows dynamic construction of
object invocation. The interface details are filled in by consulting with the Interface Repository and/or
other run-time sources. The Client IDL Stubs make calls to the ORB using interfaces and make it easier
for the Clients to issue static requests to objects across a network. Object Adapters allow an object
implementation to access the ORB services. CORBA specifies that each ORB must support a standard
adapter called the Basic Object Adapter (BOA). Server Skeletons (Server IDL Stubs) provide the static
interfaces to each service supported by the server.

OS LevelOS LevelOS Level

Framing, Error
Checking and

Interoperability

Framing, ErrorFraming, Error
Checking andChecking and

InteroperabilityInteroperability

IDL Compiler
Generated Stubs

IDL CompilerIDL Compiler
Generated StubsGenerated Stubs

MarshalingMarshalingMarshaling

OS LevelOS LevelOS Level

Framing, Error
Checking and

Interoperability

Framing, ErrorFraming, Error
Checking andChecking and

InteroperabilityInteroperability

IDL Compiler
Generated Stubs

IDL CompilerIDL Compiler
Generated StubsGenerated Stubs

Demarshaling
and

Demultiplexing

DemarshalingDemarshaling
andand

DemultiplexingDemultiplexing

Client CodeClient CodeClient Code Server CodeServer CodeServer Code

Network

ApplicationApplication
LogicLogic

RuntimeRuntime
LibrariesLibraries

PlatformPlatform
InfrastructureInfrastructure

Figure 5-11: Information Flow in a CORBA Deployed Application

Script Servers
Some vendors support script servers that use operating system commands in a script (e.g., Bourne
shell in UNIX), or command procedures. Building of script servers requires somewhat different steps.
First, the implementation must indicate an "activation_type (script)" parameter. In addition, special
techniques for handling input-output are needed because scripts are not interactive. Passing
information from clients to the scripts also requires calls to special routines. Script servers also have
several limitations such as data types, performance restrictions, and object creation. Despite several
limitations, script servers are handy tools for quickly developing CORBA applications.

5.2.5 Combining CORBA with Web and XML

Many applications need to combine/integrate CORBA with Web and XML. Perhaps the oldest and the
best known method is to invoke CORBA calls from a CGI gateway. Other approaches are:

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-20

 Invoke CORBA directly from the Web browsers (Netscape browsers can issue the CORBA IIOP
calls).

 Use HTTP as a transport protocol underneath ORBs. A few small companies have implemented
this option.

 Use CORBA to interact between Java applets across machines. This option is quite popular at
present.

What about XML and CORBA - Well, an XML document can be used as a parameter of IDL. Thus,
CORBA can be used as a transport mechanism for XML.

The main idea is to integrate CORBA with Web so that Web browsers can work directly with CORBA
objects. Figure 5-12 shows a schematic for the most popular choice (i.e., through Java applets). The
Figure shows the 3 major steps: 1) Download the Java applet from the server, 2) load the Java applet,
and 3) invoke CORBA calls from the applet. In addition, non browser applications can also call the
same server (i.e,, as long as the IDL of the CORBA server is known, the Java applet clients or any
other client can call the CORBA server. The CORBA server can then invoke the back-end systems.

Please keep in mind that OMG has developed a standard called XMI (XML Interchange) that
essentially uses XML as a means to exchange information between UML documents (i.e., XMI flattens
UML and then passes it around to different UML sites). This could lead to other ways of integrating
CORBA with XML.

HTMLHTML
/XML Docs/XML Docs

1. Downlaod
Java AppletsHTML/XML

Displays

Web Web
BrowserBrowser

WebWeb
SiteSite

WebWeb
ServerServer

Java

CORBA
Server

3. CORBA
(XML over
CORBA)

 Corporate
Databases
and
Applications

Non-Browser
Clients with
XML

2. Load Java
Applets

Figure 5-12; Combining CORBA with Web and XML

5.2.6 CORBA 3.0

CORBA has gone through several stages of evolution. It started with specification 1.0 and is at 3.0 at
the time of this writing. Initial specifications of CORBA (i.e., CORBA 1.1 and 1.2) did not specify many
important services such as security, concurrency, and transaction processing. This had two major
consequences. First, the CORBA-based applications were limited in scope (e.g., they provided no
security). Second, different vendors chose to plug different services to get going. This has led to
CORBA implementations by vendors that do not interoperate with each other (recall that interoperability
is the main goal of CORBA!). ORBs from different vendors interoperate with each other only through
deliberate efforts and joint agreements between vendors.

CORBA 2.0, introduced in December 1994, addressed many problems by adding many new services.
CORBA 2.0 expanded some ORB capabilities -- the Interface Repository expanded and a new
interface (Dynamic Skeleton Interface) for servers was added. However, most of the new 2.0

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-21

capabilities added have been in the distributed object services of CORBA. Specifically, CORBA 2.0
specifies standards for the following object services (see Figure 5-15):

 Object Naming Service to allow different components to locate each other in a CORBA
environment.

 Event Service to support notification to objects for different events.
 Persistence Service for storing components in data stores such as object databases, relational

databases and flat files.
 Object Life Cycle Service for creation, modification, and deletion of objects.
 Transaction Management Service to support object-oriented transactions in distributed

environments.
 Concurrency Control Service for obtaining and freeing locks.
 Security Service to protect components from unauthorized users.
 Time Service to provide universal timing service.
 Licensing Service to meter the use of components.
 Query Service to provide SQL and OQL (Object Query Language).
 Properties Service to associate properties (e.g., time and date) to components.
 Relationship Service to establish dynamic associations (e.g., referential integrity) between

components.
 Externalization Service to get data in and out of a component in streams. This can be used in

multimedia applications.
CORBA 2.0 also addressed the problem of ORB interoperability by defining inter-ORB protocols (IOPs)
for interoperability of Object Request Brokers. Although the IOPs do not impact application software
development (IOPs are too low level for applications), they play a key role for an overall middleware
architecture.

CORBA 3.0 is the new kid on the block in the CORBA world. It is built upon CORBA 2.0 and 2.2 and
has expanded many existing capabilities plus added new ones. Examples of CORBA 3.0 capabilities
are:

 CORBA Messaging
 Real-Time CORBA
 Objects-by-value (OBV)
 CORBA Firewall
 CORBA Component Model
 CORBA Scripting Language
 JAVA-to-IDL/IDL-to-JAVA
 DCE/CORBA Interworking

CORBA 3.0, due to its inclusion/expansion of existing and introduction of new services, is a
comprehensive solution for distributed object computing. In fact, CORBA 3.0 has been used as an
umbrella term to refer to a suite of specifications which, taken together, add a new dimension of
capability and ease-of-use to CORBA.

We will discuss the main features of CORBA 3.0 in the Tutorial Module (see the Chapter “CORBA
Technologies – A Closer Look”).

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-22

Naming Persistence Life Cycle Properties

Concurrency Collections Security Trader

Externalization Events Transactions Query
Relationships Time Change

Management
Licensing

CORBA Applications CORBA Vertical Services

CORBA Services

Object Request Broker CoreObject Request Broker Core

Figure 5-13: CORBA 3.0 Capabilities

5.2.7 CORBA Summary

Object-oriented technologies and techniques have natural applications in distributed systems. Entities
in distributed systems can be viewed as objects exchanging messages. OMG was formed to create a
suite of standard languages, interfaces and protocols for interoperability of applications in
heterogeneous distributed environments. CORBA is an OMG specification for invoking objects in a
distributed environment.

Initial specifications of CORBA did not specify many details. However, a wide range of capabilities have
been added under the CORBA 3.0 umbrella. In addition, several Domain Task Forces and Platform
Special Interest Groups (PSIGs) have been busily working on different aspects of CORBA. Examples
of key CORBA developments in CORBA Services, distribution protocols, specialized models, vertical
domain facilities, support for analysis and design, and basic object computing model are summarized in
the sidebar “Key CORBA Developments”.
Many vendors are announcing CORBA compliant software. Examples of a few products are:

 Inprise's Visibroker
 Iona's Orbix
 BEA's M3
 IBM's Object Broker

• IBM (SOMobjects) - free for OS/2, AIX, Windows
• PrismTech (OpenBase)
• ParcPlace (Distributed Smalltalk)
• TIBCO (ObjectBus)
• ObjectSpace (Voyager)
• Objective Interface Systems (ORBexpress) also marketed by ObjecTime
• Bionic Buffalo
• I-Kinetics
• RogueWave (Nouveau)
• Java RMI over CORBA IIOP

A wide range of free and prototype CORBA implementations are also available. For a list of such
products, consult the Washington University at St. Louis Web site (www.wustl.edu/~schmidt/corba-
products.html).

For a wide range of sources, including test tools, go to http://www.vex.net/~ben/corba/.

Additional details about CORBA are listed in the sidebar “Key Sources of Information for CORBA”. The
OMG home page (http://www.omg.org) is an excellent source of the recent activities in CORBA.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-23

Although we have concentrated on the object request brokers so far, the concept of brokers is general
and is currently being exploited in the message broker architectures (see the sidebar "Message Broker:
Another Kind of Broker").

Key CORBA Developments
• CORBA Services

– Naming - directory service: (svc name) ➔ (svc object reference)
– Trading - service discovery: (svc attributes) ➔ (svc name)
– Event/notification - Producers notify consumers using events
– Transactions - distributed (2Phase Commit), flat transactional objects
– Security - different levels (IIOP over SSL, additionally used)
– Messaging - Support asynchronous processing for loosely coupled

• Distribution protocol
– GIOP (Generalized Interorb Protocol) and its mappings (IIOP)
– Mappings for SS7, ATM

• Specialized Models
– Real-time, Fault-tolerant, Minimum CORBA

• Vertical Domain facilities (e.g., Telecom)
– CORBA to TMN Interworking
– Wireless CORBA

• Support for Analysis and Design
– UML(universal Modeling Language)

• Basic Object-Oriented Computing Model
– CORBA Components, ISO/OMG IDL and language mappings

Message Broker: Another Kind of Broker
A broker mediates between clients and servers (i.e., instead of a client directly connecting to a server, it
first connects to a broker that in turn finds a suitable server). The concept of a broker is independent of
the implementation of the broker. For example, the best known implementation of the broker
architecture is the object request broker (ORB) as presented in OMG CORBA specification. In CORBA,
the ORB mediates the interactions between remote objects. Another type of broker, called a message
broker, is being presented as a viable implementation of the broker architecture.

A message broker is not restricted to objects. Instead, it delivers messages between disparate
applications, including legacy applications. The underlying technologies used by the message broker
may consist of RPCs or MOMs, although MOM does appear to fit this model quite well. The basic idea
of a message broker is that it can provide brokerage services asynchronously and support a
"publish/subscribe" model. The message broker can also be rule-based, i.e., you specify the rules to
be used by the middleware to perform certain actions. Message brokers are at the core of “Enterprise
Application Integration” platforms that are commercially available from many vendors such as Active
Software, Vitria, and IBM. EAI platforms, based on message brokers, are expected to be a $11 Billion
market by the early 2000s. We will discuss EAI platforms in a later chapter.

The Gartner Group proposed and advocated message brokers as key to the future success of
distributed computing. The Gartner Group predictions in the mid 1990s that message brokers will be as
widespread as database gateways and data warehouses have been correct. See, for example, Bort, J.,
"Can Message Brokers Deliver?", Applications Software Magazine, June 1996, pp.70-76).

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-24

Key Sources of Information for CORBA
 J. Seigal, “CORBA 3.0: Fundamentals and Programming”, second edition, Wiley, 2000.
 D.Schmidt, Overview of CORBA: http://siesta.cs.wustl.edu/~schmidt/corba-overview.html.
 R.Orfali, D. Harkey, Client/Server Programming with Java and CORBA, Wiley 1997.
 T. Mowbray, W. Ruh, Inside CORBA, Addison-Weslet 1997.
 T. Mowbray, R. Zahavi, The Essential CORBA, Wiley 1995.
 T. Mowbray, R. Malveau, CORBA Design Patterns, Wiley 1997.
 J. Farley, Java Distributed Computing, O’Reilly 1997.
 The OMG Website: http://www.omg.org.
 “Corba Connections”, Comm. of ACM, Special Issue, October 1998.
 http://www.vex.net/~ben/corba/ -- An interesting private Web site that watches CORBA ORB

Core Feature Matrix, CORBA services Feature Matrix , and CORBA Vendor Platform Matrix.
• CORBA Business Objects (Workflow).
• Object Management Research in LASER (Pleiade).
• CORBA Web gateway.
• Joint Inter Domain Management.
• Towards a Web Object Model - by Frank Manola.
• Gabriel D. Minton's papers.
• CORBA Design Patterns - by Thomas Mowbray and Raphael Malveau.
• Alan Pope (The CORBA Reference Guide).
• Kate Keahey's Brief Tutorial on CORBA.
• Manfred Schneider's CORBA links.
• CORBA for Linux.
• Segue Software (was Black & White) (SilkPerformer, SilkMeter, SilkPilot, SilkObserver).
• Tom Valesky's Free CORBA page.
• Defense Information Infrastructure - Predicting CORBA Performance.
• Benchmarking some ORBs.
• GNOME - GNU Network Object Model Environment.
• Michi Henning.
• Dominique Benech's COBALT: A KQML-CORBA based Architecture for Intelligent Agents

Communication.
• Live Script and Live Repository.

5.3 Microsoft’s DCOM (Distributed Component Object Model)

5.3.1 Overview

In March 1996, Microsoft announced its "ActiveX" strategy that integrates the desktop services with the
World Wide Web. DCOM (Distributed Component Object Model) serves as a core technology for
remote communications between ActiveX components. In the late 1990s, Microsoft positioned DCOM
and ActiveX as a complete environment for components and distributed objects in Microsoft
environments. Almost everything coming out of Microsoft was based on ActiveX. Later, Microsoft
expanded DCOM to COM+. At the time of this writing, COM+ is being phased out in favor of XML Web
Services (discussed in the next section).

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-25

We briefly discuss DCOM and ActiveX because many current applications are based on this
technology. Although ActiveX provides many capabilities, from a distributed objects point of view, the
following features are significant (we will see the details in the following subsections):

 All ActiveX components communicate with each other by using DCOM. So a Java applet (an
ActiveX component) can call a remotely located Microsoft Word document (another ActiveX
component) over DCOM. See Section 5.3.2.

 The Web browser can behave as a container. For example, the Microsoft Internet Explorer can
contain components such as Word documents, Java applets, C code, and Excel spreadsheets.
See Section 5.3.3.

 Web technologies (browsers, HTML pages Java applets) can be intermixed with desktop tools
(spreadsheets, word processors) for distributed applications. See Section 5.3.4.

 Serve facilities such as SQL servers and legacy access gateways can be invoked from ActiveX
clients. See Section 5.3.4.

5.3.2 DCOM (Distributed Component Object Model) as an ORB

As discussed previously, ActiveX uses DCOM to provide communications between remote ActiveX
components. In this sense, DCOM is the ORB for ActiveX. The basic scenario is that Windows will be a
huge collection of ActiveX components and interfaces, with DCOM serving as the ORB. It is expected
that all system services will be written as DCOM objects. These and other services can be provided by
Microsoft or any third party vendors.

DCOM provides the basic brokerage services for ActiveX. It supports APIs for static as well as dynamic
invocation of objects. DCOM uses DCE RPC for interactions between COM objects. DCOM's object
model is somewhat limited because DCOM does not support multiple inheritance. In other words, COM
supports inheritance through pointers that link different interfaces together. Figure 5-14shows the role
of DCOM in ActiveX and Microsoft environments.

The following facilities of DCOM should be noted (see the sidebar "DCOM Versus CORBA" for
additional discussion):

 Interface Definition Language (IDL): DCOM uses interfaces that are very similar, in concept, to
the CORBA interfaces. An interface defines a set of related functions. The DCOM IDL is used to
define an interface, the method it supports, and the parameters used by each method. DCOM IDL
can be used to define your own interfaces, in addition to the Microsoft provided interfaces. For
example, at the time of this writing, OLE/ActiveX consists of more than 100 interfaces, each
supporting about 6 functions. Additionally, more than 100 Win32-style APIs are supported.

 Object Definition Language (ODL) and Type Libraries: DCOM supports an Object Definition
Language (ODL) used to describe metadata. The interface specifications and metadata are stored
in a repository, known as Type Library. Type Libraries are equivalent to the CORBA Interface
Repositories.

 Object Services: DCOM provides very rudimentary object services at the time of this writing.
Examples of the services provided are a basic licensing mechanism, a local directory service
based on the Windows Registry, a basic life cycle facility, persistence services for file systems, and
a very simple event service called connectable objects. This is in addition to the naming services
provided by the Type Libraries. However, the overall ActiveX Platform is expected to support other
services such as X.500 directories.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-26

DCOM DCOM

Web Browser Server

Visual basic, Word,
Spreadsheets, Other
Components

SQL server,
Transaction processor,
Legacy Access

Figure 5-14: DCOM Conceptual View

DCOM Versus CORBA: Similarities and Differences
We will start with the typical disclaimer about technology comparisons, i.e., both technologies are
evolving at the time of this writing and consequently the similarities/dissimilarities will also change with
time. Our objective is to present, what appears to be, the philosophical and fundamental approaches
being used by the two technologies.

At a high level, there are several similarities between CORBA and DCOM. However, several
differences appear when you look closely.

Similarities:

 Both are based on the object model.
 Both utilize the interface concept and utilize an Interface Definition Language (IDL).
 Both use static and dynamic calls from clients to servers.
 Both use a repository to locate objects and invoke them (CORBA calls it the Interface Repository

and DCOM calls it a Type Library).
Dissimilarities:

 CORBA is a specification but DCOM is an implementation.
 DCOM uses, in addition to IDL, Object Definition Language (ODL), for defining metadata. CORBA

uses a single IDL for everything.
 DCOM uses the universal unique ID (UUID), based on OSF DCE, to locate and invoke objects.

CORBA does not use UUIDs. It uses object references and repository to locate and invoke objects.
 DCOM uses the OSF DCE RPC as the basic transport mechanism between remote objects.

CORBA uses several options such as IIOP (Internet Inter-ORB Protocol) that uses TCP/IP sockets
and ESIOP (Environment Specific Inter-ORB Protocol) that runs on top of DCE.

 CORBA only uses connection-based (i.e, TCP) services while DCOM favors connectionless (i.e.,
UDP) services. DCOM does support TCP connections but it favors UDP for purpose of scaling (do
not have to keep track of large number of open sessions).

 CORBA 2.0 has specified a very extensive set of services that include transaction management,
security, concurrency control, life cycle, query, etc. In comparison, DCOM services at present are
somewhat limited (these are being added through the ActiveX Platform).

Additional discussion about differences between DCOM and CORBA can be found in [Orfali 1996,
Foody 1996]. The WWW Consortium held an excellent technical seminar on November 18, 1996, on
trade-offs between DCOM and CORBA. Public information discussed in this seminar can be obtained
from the Web site (http://www.w3.org).

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-27

5.3.3 Web Browsers as Containers of ActiveX Components

An ActiveX component is the basic unit of ActiveX applications. Different components can be combined
to develop and deploy new applications. These components may be specifically written for this
application or reused from some other project or even purchased off the shelf.

Components by definition cannot survive on their own — they require containers in which to execute.
Visual Basic is a common example of a container in the desktop world. Visual Basic applications load
needed components from a machine's local disk or a file server. In the Internet World, the Web
browsers are a common example of a container — they load Java applets (Java applets are
components) and provide an environment to run them (i.e., contain them). Let us focus on Web
browsers as containers.

Before ActiveX, Web browsers were primarily serving as containers for Java applets. We have
discussed Java applets in Chapter 4. These applets are downloaded from Web servers (embedded in
HTML pages) and then the Web browser is used as a container. ActiveX has extended the scope of
browsers as containers by allowing ActiveX components to be "contained" by Web browsers. At
present, the Microsoft Internet Explorer is the main browser used as an ActiveX container. This can be
very useful. For example, the Web browser can now contain spreadsheets, Word documents, and
code written in C++, C, Java, or other programming languages. You can build powerful applications
that may, for example, supply specialized viewers with the data to be viewed (the viewer and the data
is loaded as needed from the network and runs inside the Web browser as a container).

5.3.4 ActiveX Controls -- Building Downloadable Web-based Components

Microsoft's ActiveX Controls (formerly called either OLE controls or OCXs) are the special brand of
ActiveX components that have been optimized for Internet use. ActiveX controls are, in principle, very
similar to Java applets. For example, ActiveX controls, like Java applets, are self-contained pieces of
functionality that run inside some kind of container (e.g., a Web browser). Thus, ActiveX controls can
be embedded in Web pages and downloaded on demand. However, unlike Java applets, ActiveX
controls can be written in various languages such as C, C++, and Java. Unlike Java applets, which are
downloaded in a machine-independent format and usually interpreted within the browser, ActiveX
controls are binaries. Another difference is that Java applets today are supported primarily by only one
kind of container -- the Web browsers. ActiveX controls, on the other hand, are supported by different
kinds of containers (e.g., Visual Basic applications).

Developers of downlaodable Web-based applications have two basic choices: Java applets or ActiveX
Controls. See the sidebar "Java Versus ActiveX Controls" for discussion.

A plethora of different ActiveX controls already exist in the marketplace. Examples are the controls that
implement spreadsheets, data viewing, mainframe connectivity, voice recognition, and the like. Many of
these existing controls can be downloaded and executed within an ActiveX-capable browser. Thus,
there is an instant supply of available ActiveX components for Web-based applications.

5.3.5 ActiveX Server

The ActiveX Server is based on the Microsoft Information Server (IIS) that is integrated with the
Windows NT network operating system. The ActiveX Server includes the Microsoft BackOffice family
that includes the Microsoft SQL Server and the Microsoft Systems Management Server. ActiveX
Server provides scripting and control facilities to tie into legacy systems or to perform other specialized
functions on the server side. The scripting capabilities support PERL, JavaScript and Visual Basic
Script.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-28

5.3.6 General Observations and Comments

The facilities of ActiveX have evolved over the years. However, competitors to ActiveX such as CORBA
have also matured considerably in the same time period. At present, ActiveX can be combined and
"bridged" to CORBA and other technologies. DCOM to CORBA bridges are available from companies
such as Iona at the time of this writing. The Iona COM/CORBA bridge provides two-way mapping: it
allows DCOM objects to be treated as CORBA and vice versa.

Literature on ActiveX keeps growing. The Microsoft Web site (http://www.microsoft.com) provides
access to latest announcements, white papers, and frequently asked questions (FAQs). The book by
David Chappell, "Understanding ActiveX and OLE", Microsoft Press, latest edition,is a good overview of
the subject matter.

Java Versus ActiveX Controls
Java applets and ActiveX Controls are two valid choices for building downloadable Web applications.
The leading browsers, Netscape Navigator and Microsoft's Internet Explorer, support both options. Let
us discuss the choice between these two options.

Java applets should be chosen if a component must run on heterogeneous client systems, if the Java
security exposures are manageable, and if you are not concerned with the performance limitations of
the Java interpretive model (interpreters can be slower than binary code).

ActiveX Controls should be chosen if the component is targeted at Microsoft systems, is needed in a
wider range of containers than just Web browsers, and must run as efficiently as possible (ActiveX
Controls download binary code).

As expected, both of these models will evolve. For example, "just-in-time" compilers for Java will
improve the performance by compiling an applet byte code on arrival. The platform independence issue
may disappear because Microsoft is planning to port ActiveX on multiple platforms. Keep in mind that
ActiveX Controls also support Java applets (Java environment is modified so that it uses DCOM).

Source: Chappell, D., "Component Software Meets the Web: Java Applets vs. ActiveX Controls",
Network World, May 1996.

Combining Distributed Objects with the Web - Let Me Count The Ways
There are several ways to combine distributed objects with Web. Here are the principal ones that use
CORBA, OLE/ActiveX, SOAP, and others).

The CORBA route:

 Invoke CORBA calls from a CGI procedure (a script or a subroutine written in C or in any other
language) that resides on the Web server. In this case, the CGI procedure is the CORBA client.
This is the oldest and most well-known method.

 Invoke CORBA directly from the Web browser. Netscape browsers are beginning to support the
CORBA IIOP calls directly. Thus, the Web browser sites behave as CORBA clients.

 Use CORBA to interact between Java applets across machines. This option is currently supported
by a few vendors (like Sun).

The ActiveX/DCOM route:

 Invoke DCOM calls from a CGI procedure (a script or a subroutine written in C or in any other
language) that resides on the Web server.

 Invoke DCOM calls directly from the components contained in the Web browser (e.g., the Microsoft
Internet Explorer). These components may be written in C, C++, Visual Basic, Java or other

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-29

programming languages behaving as ActiveX Controls and contained inside the browser.

 Invoke DCOM calls from the ActiveX components such as spreadsheets that may invoke Java
applets or other components residing on Web servers.

Other routes:

 Use the Sun Remote Method Invocation (RMI) between remotely located Java applets. This
technology is very well supported by SunSoft tools but is only restricted, at the time of this writing,
to interactions between Java applets only.

 Use HTTP to invoke remote objects. A few small companies have implemented this option by
using HTTP underneath ORBs. This option should be used rarely, if at all. We are mentioning it for
completeness.

The SOAP Route – The New Way:

 Use XML Web Services and SOAP, the new kid on the block. SOAP is a lightweight protocol for
accessing objects over HTTP.

Time to Take a Break
• Distributed Object Technologies
• CORBA and DCOM
• Web Services, .NET, J2EE
• SOAP and EJBs

Suggested Review Questions Before Proceeding
 What is CORBA and what are its basic facilities and services?
 What is Microsoft’s DCOM and what are its basic facilities and services?
 Compare and contrast CORBA with DCOM

5.4 CORBA 3.0 -- The Latest CORBA

5.4.1 Evolution of CORBA

CORBA started with specification 1.0 and is at 3.0 at the time of this writing. Initial specifications of
CORBA (i.e., CORBA 1.1 and 1.2) did not specify many important services such as security,
concurrency, and transaction processing. Many of these limitations were overcome in CORBA 2.0 and

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-30

2.2. CORBA 3.0 is built upon CORBA 2.0 and 2.2 and has expanded many existing capabilities plus
added new ones. Examples of CORBA 3.0 capabilities are:

 CORBA Messaging
 Real-Time CORBA
 Objects-by-value (OBV)
 CORBA Firewall
 CORBA Component Model
 CORBA Scripting Language
 JAVA-to-IDL/IDL-to-JAVA
 DCE/CORBA Interworking

CORBA 3.0, due to its inclusion/expansion of existing and introduction of new services, is a
comprehensive solution for distributed object computing. In fact, CORBA 3.0 has been used as an
umbrella term to refer to a suite of specifications which, taken together, add a new dimension of
capability and ease-of-use to CORBA.

We will discuss the main features of CORBA 3.0 in the next few sections. Our objective is not to
discuss every service that is available under the CORBA 3.0 umbrella, instead we highlight the key
developments. It is assumed that the reader is familiar with the general CORBA concepts as explained
in the Distributed Object Technologies Chapter in the Middleware Module. If not, please stop and
rewind.

Naming Persistence Life Cycle Properties

Concurrency Collections Security Trader

Externalization Events Transactions Query
Relationships Time Change

Management
Licensing

CORBA Applications CORBA Vertical Services

CORBA Services

Object Request Broker CoreObject Request Broker Core

Figure 5-15: CORBA 3.0 Capabilities

5.4.2 Locating CORBA Objects – The IOR (Interoperable Object Reference)

The CORBA object model relies on the notion of locating (“binding”) server objects anywhere in the
network and then accessing these objects with minimum knowledge of the underlying networks and

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-31

operating systems. The Interoperable object reference (IOR) facilitates location and access of server
objects and is a cornerstone of the CORBA architecture. The computer-readable IOR is the primary
way to reach a server object and invoke it. The IOR is used not only to locate application objects but
also to locate CORBA services. For example, you first get an IOR of the Naming Service and then use
it. Let us briefly review the key ideas.

First, a terminology note. The server objects, as stated previously, are called “object implementations”
or “servants” because they are the implementations of the invoked object (for a C++ or Java object, a
servant is an instantiaition of the class).

The following is simplified code to access an object

 Client issues: ior1 = Bind (“myobject”, host); /* The ORB creates an IOR ior1 and returns it to the client */
 Client issues: ior1.op1 (p1, p2); /* the client invokes the operation op1 with parameters p1, p3 */

IORs can be converted into strings, sent to other clients through arbitrary means (such as email),
converted back to object references by the new clients and used to access the same servant. You can
also store the IORs in a standard directory such as CORBA Naming Service or LDAP (Lightweight
Directory Access Protocol). IORs can be also used in Trading Services to invoke the most suitable
server.

An IOR uniquely identifies a servant and is used by clients to invoke servant operations. An IOR
contains information such as name and location of the object implementation, interface type of the
object, and unique key (within the scope of a server). Specifically, the IOR contains:

 Protocol and address details such as protocol version and machine and port number (transient
objects)

 Object key that contains Object Adapter Name and Object ID (a.k.a Object Name)
 Type name, also called repository ID, is used to retrieve the object from the interface repository.

Once a unique IOR has been created, it can be used at any later time to access the servant. It can
also be passed to other clients as parameters or results of operations. The IOR can be converted
to/from strings. In CORBA, a common string format is defined for object references. You can:

 use org.omg.CORBA.ORB.object_to_string(in Object obj) to create a IOR;
 use org.omg.CORBA.ORB.string_to_object(in string str) to create an object reference from a IOR

When a client invokes a request via an IOR, the ORB run time is responsible for sending the request to
the correct servant. CORBA distinguished between a transient and persistent IOR. A transient IOR
continues to work only for as long as the servant is available (i.e., is up and running). A persistent IOR,
on the other hand, continues to work even if the server is shut down and restarted, even on a different
machine. IORs have profound impact on object scalability and migration (see Henning 1998]).

5.4.3 Object Adapters and POA (Portable Object Adapters)

An object adapter mediates between clients and the object implementations (called servants). As
shown in Figure 5-16, resides between the ORB and the servants and handles the incoming client
calls by passing them along to the servants. Object adapters provide the following services:

 Generating object references for objects. These references may be persistent or transient. The
object types are referred through a lifespan policy.

 Demultiplexing requests to servants. This means finding the right servants and dispatching the
requests to the appropriate servants.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-32

 Activation and de-activation of servants. This includes explicit and on-demand activation; and
single/ORB-controlled thread model.

 Collaborating with IDL skeletons to invoke servant operations, i.e., marshalling/un-marshalling

ORB
Object
Adapter

Servant

Servant

Servant

Requests

Server
Application

Figure 5-16: Object Adapter Conceptual View

In essence, an object adapter is a manager of the server application that hides all the complexity of the
server application. A variety of object adapters can be envisioned to support different types of requests.
To avoid proliferation of too many object adapters, OMG specified a Basic Object Adapter (BOA) that
can be used for most ORB servants. A BOA is required by CORBA in every ORB so that a servant
based on BOA can be used by any ORB. Unfortunately, the BOA was not well specified. Different
vendors provided different facilities for implementing servants. For example, some allowed threading
while others did not. This led to portability problem where a servant implemented on X platform did not
port to Y platform. To overcome this limitation, a POA (Portable Object Adapter) has been specified in
later versions of CORBA amd are included in CORBA 3.0. The design goals of POA are:

 Portability, i.e. the servant code should be portable between different ORB vendors.
 Persistent identities, i.e., create an identity that can be used to invoke a persistent object (i.e., the

object can be invoked after the session has been over)
 Automation, i.e., transparent object activation and implicit servant activation
 Different resource utilization models, i.e., multiple objects IDs per servant
 Responsible for Objects, i.e., object . ID, state management, code, object status
 Servers can have multiple nested POAs

 In addition, a POA is designed to support a wide range of policies such as the following:

 threading: single threaded or ORB controlled
 lifespan: persistent or transient objects
 Object ID uniqueness: one object per servant or multiple objects per servant
 Object assignment: user or POA generated Object ID
 Implicit activation: implicit activation of servant OK or not
 Retention: POA retains active servants in the Active Object Map
 Request processing: requests are serviced by

 - consulting the active object map

 - using a default servant

 - invoking a servant manager

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-33

A POA provides functions such as support of an Implementation Repository, facilities for generating
and interpreting object references, identification (authentication) of the client (or principal) who
submitted the request, activation and deactivation of server objects, and method invocation through the
server stubs. POA supports many scheduling policies to support different type of object servers.
Examples of the scheduling policies are shared server (i.e., one server handles multiple clients calls),
unshared server (i.e., new server is started when a request is made for an object that is not yet active),
server per method (i.e, new server is started each time a request is made), and persistent server
(servers are activated by means outside BOA).

POA is quite complex and is described very well by [Villonski 1998]. Additional details can be also
found in [Siegel 2000]. If you need still more information, see the OMG POA specifications.

Some object adapters are being developed for specialized CORBA situations. For example, an adapter
for accessing objects in OODBMs is being considered. In addition, a "streams adapter" has been
proposed to OMG to handle distributed multimedia applications over CORBA (see next chapter for
additional information).

5.4.4 Objects by Value

In the earlier versions of CORBA, objects are passed by reference only. This implies that the
referenced object does not move, any access to the object from a remote application causes network
traffic. This can cause performance problems if an object is accessed remotely frequently. The basic
idea of object by value is that an object can be, if needed, transferred to a remote site.

CORBA “values” are passed by value to a remote site. There is no correlation between the origin and
destination copies, ORB creates a new copy on the receiver. However, the moved object is not
registered with the ORB for remote accesses, i.e., it has no identity and can accept only local method
invocations. To support objects by value, OMG defined a new Value type. State/Behavior passing can
be implemented through the streaming interface in java or by means of user defined factories in C++

5.4.5 CORBA Messaging - Asynchronous Messaging and Quality of Service Control

The original CORBA primarily supported a synchronous request/reply model with blocking.. This model,
based on the RPC (Remote Procedure Call) model, blocks the clients when they issue a call to the
server. The original CORBA also supported Deferred Synchronous (i.e., client issues a call and
continues processing; it can later poll or block waiting for a response) for the dynamic invocation
interface (DII). However, since DII has been used very rarely, this feature has not been used widely.
The original CORBA also supported Oneway (also known as “Fire and Forget”) model. However, this
feature has been also used rarely.

Thus CORBA has been criticized as a restrictive specification that forces the users into an RPC
paradigm. In particular, lack of asynchronous messaging to support loosely coupled systems has been
considered a big hole in CORBA specifications [Vinoski 1998]. In particular, asynchronous messaging
supports large scale distributed systems where clients and servers do not stay connected all the time.
Asynchronous invocation allows remote requests within an asynchronous., event driven environment in
which callbacks are invoked to handle events.

The CORBA Messaging Specification is a comprehensive specification that defines a number of
asynchronous and time-independent invocation modes for CORBA, and allows both static and dynamic
invocations to use every mode. It also contains numerous Quality of Service policies. Let us review
these features briefly.

CORBA Messaging Service preserves the original three request models (synchronous, deferred
synchronous, one way) and adds the following asynchronous models:

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-34

 Callbacks: The client supplies an additional object reference parameter of a “reply-handler” with
each request invocation. When the response arrives, the ORB uses the reference to deliver the
response back to the reply-handler. Thus the client can continue processing and ask the server to
call back with responses. CallBacks are implemented using ReplyHandler, an object which is
invoked when the result of the invocation is available..

 Polling. When the client invokes a request, it is immediately given a valuetype that it can use to
poll the server. Based on the result of the poll, the client may decide to block furthher processing or
continue. A Poller is a CORBA value returned by the call invocation is used to either poll or block
until a response is available

 Time Independent Invocation (TII). This allows a store-and-forward model for the situations when
the called objects may not be active or disconnnected at the time of call. An agent intercepts the
call and keeps the message alive in the meantime. When a Time Independent Invocation is
made, the destination object must be a persistent object. Minor changes to GIOP (Generalized
Interoperable Protocol) have been made for the message to be delivered to an intermediate agent
that can route the calls to destination objects when they become available . .

.

Quality of Service (QoS) is supported through CORBA Messaging policies. Clients can specify the QoS
they require for message delivery, message queuing, and message priorities. QoS policies can be
specified at the ORB level to affect all requests, at the thread level to affect only those requests made
by that thread, and at the target-object reference level to affect only those requests made by the
referred-to-object. Reliability aspects of QoS are provided through shared transactions (one transaction
per request/reply) and unshared transactions (3 transactions per request/reply; one for client-send, one
for deliver-request and receive-reply, and one for client obtain reply)

Minor changes to the OTS (Object Transaction Services) have been made for reliability aspects of QoS
Messaging Specification. In the shared transaction model supported by Object Transaction Services
(OTS) both the client and the server must be active at the same time. The unshared mode request a
minor change to OTS and divide the request/reply process in three transactions allowing the client and
the server not to be active at the same time. In the first transaction the request is delivered to the
messaging mechanism, the second transaction deliver the request to the target and receive the reply,
the final transaction deliver the result to the client. We will discuss OTS in a later chapter.

An Asynchronous Method Invocation (AMI) language mapping is specified to facilitate asynchronous
messaging and QoS policies. The changes to the OTS (Object Transaction Services) for QoS and
GIOP for time Independent Invocation (TII) are included in the CORBA Messaging Specification.

5.4.6 Minimum, Fault-Tolerant, and Real-Time CORBA – More Quality of service
control

Quality of service (QoS) is a major issue at present in distributed systems. As a matter of principle,
CORBA traditionally has hidden many low level details from clients such as how objects are located,
how network connections are made, etc. . Unfortunately, hiding these details has made it difficult for
the CORBA applications to control quality of message delivery. The CORBA Messaging Services,
described previously, addresses many of these issues. Additional QoS capabilities are provided
through Minimum, Fault-Tolerant, and Real-Time CORBA.

Minimum CORBA. is primarily intended for embedded systems. Embedded systems, once they are
finalized and burned into chips for production, are fixed, and their interactions with the outside network
are predictable - they have no need for the dynamic aspects of CORBA, such as the Dynamic
Invocation Interface or the Interface Repository that supports it. Minimum CORBA.does not include
the dynam support features.

Real-time CORBA is an optional extension for all ORBs. It standardizes resource control – threads,
protocols, and connections - using priority models to achieve predictable behavior for both hard and
statistical real-time environments. In particular, Real-time CORBA supports fixed priority scheduling,

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-35

control over ORB resources for end-to-end predictability, and flexible communications. Dynamic
scheduling, has been added via a separate RFP.

Fault-tolerance for CORBA has been addressed by an RFP for a standard based on entity
redundancy, and fault management control. The entity redundancy consists of: several options such as
the following:

 Cold passive replication. Recovery from faults using state information and method
invocations/responses recorded in a message log.

 Warm passive replication. Current state of the primary replica is periodically synchronized with the
other replicas.

 Active replication. Every replica executes the invoked methods
 Active replication with majority voting. Both invocations and responses are voted.

At the time of this writing, cold passive replication and warm passive replication are commercially
available. Other features will become avilable in the future.

5.4.7 Event/Notification Services

CORBA Event Service was introduced for provides an asynchronous publish/subscribe model of event
distribution. The basic idea of the event-based publish subscribe model is that a supplier publishes the
events that are posted on a channel. The consumers subscribe to the events and respond to the
needed events.

The CORBA Event Services support pull (consumer initiated) or push (producer initiated) models. The
publish-subscribe model based on push is displayed in Figure 5-17. In this case, the producer pushes
the events to the channel from where they are pushed to the consumer.

The event content is packaged into an Any data type. The sidebar “OMG IDL CosEventComm Module”
shows the IDL of COS (common object services) event model.

Figure 5-17: An Event-based Publish/Subscribe Model

OMG IDL CosEventComm Module

module CosEventComm {
 exception Disconnected{};

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-36

 interface PushConsumer {
 void push (in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
 interface PushSupplier {
 void disconnect_push_supplier();
 };
 interface PullSupplier {
 any pull () raises(Disconnected);
 any try_pull (out boolean has_event);
 raises(Disconnected);
 void disconnect_pull_supplier();
 };
 interface PullConsumer {
 void disconnect_pull_consumer();
 };
};

The CORBA Notification Services address the two major limitations of the Event Service, i.e., no
filtering capabilities and no QoS. The Notiifcation Service is interoperable with Event Service and
provides:

 Structured events (data structure which most event types can be mapped into). The need to
standardize event structure is clear – if there is no standard format, the vendors will creaate their
own format for events and thus create an interoperability problem (events from one vendor will not
be understood by others. Figure 5-18 shows the format of structured events.

 Extensive optimized event filtering/QoS capabilities that include Event reliability, Connection
Reliability, Event Priority, Expiry Time, Earliest Delivery Time, Order Policy, Discard Policy,
Maximum Batch Size (only for seq), Pacing Interval (only for sequences). Event filtering is provided
for per-channel/per-proxy/per-event QoS

 Sequencing of events so that the events appear in order

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-37

Quality of service is
defined by fields in the
variable header

Filtering operates on
Filterable Body Fields

“(($domain_type == “Telecom” and $event_type == “CommunicationsAla
or ($domain_type == “Transport” and $event_type == “RoadImpassable”))
and severity != 4”Event filter example

Figure 5-18: Structured Event Format

A few more words about filtering. Notification Service clients have fine-grained control over which
events are forwarded by a channel, and which are discarded. This control is supported in the form of
Filter objects.. A list of Filter objects can be associated with each Admin and Proxy object within each
channel. Each Filter object encapsulates a set of constraints which specify events that should be
forwarded. Each constraint consists of a sequence of structures indicating event types, along with a
boolean expression over the fields of an event. Event instances which are of one of the types indicated
in the sequence of structures, and whose contents satisfy the boolean expression, essentially match
the constraint

CORBA event-noification is a core technology to support the loose integratiaon needed in enterprise
application integration (EAI) . A variety of Event Based Integration Tools are commercialy becoming
available. Examples are

 Vitria <www.vitria.com>
 BusinessWare (Connectors, Transporter, Automator, Analyzer)
 Open Horizon <java.sun.com/javareel/isv/OpenHorizon/index.html>
 CrossWorlds <www.crossworlds.com>
 New Era of Networks (NEON) <www.neonsoft.com>
 Active Software <www.activesw.com>

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-38

 IBM <www.software.ibm.com>
 MQ Series Workflow, MQ Series Integrator
 TIBCO <www.tibco.com>
 TIB/ActiveEnterprise, TIB/Rendevouz, TIB/ETX, TIB/ObjectBus

5.4.8 Internet integration

The following specifications enhance CORBA integration with the Internet:

5.4.8.1 Firewall Specification.

The CORBA 3 Firewall Specification defines transport-level firewalls, application-level firewalls, and a
bi-directional GIOP connection useful for callbacks and event notifications.

Transport-level firewalls work at the TCP level. By defining well-known ports 683 for IIOP and 684 for
IIOP over SSL, the specification allows administrators to configure firewalls to cope with CORBA traffic
over the IIOP protocol. .

CORBA, as stated previously, CORBA supports call back where the client-side module instantiates an
object that is called back in a reverse-direction invocation. Because standard CORBA connections
carry invocations only one way, a callback typically requires the establishing of a second TCP
connection for this traffic heading in the other direction, which is not supported by most firewalls. Under
the new specification, an IIOP connection is allowed to carry invocations in the reverse direction under
certain restrictive conditions that do no't compromise the security at either end of the connection.

5.4.8.2 Interoperable Name Service.

The CORBA object reference is a cornerstone of the CORBA architecture. In CORBA, there was no
way to reach a remote instance unless you could get access to its object reference. The easiest way to
get a reference to an object is through the Naming Service. But what if you did not have a reference for
the Name Service (NS) itself (NS also needs an object refernce)?

The Interoperable Name Service defines one URL-format object reference, iioploc, that can be typed
into a program to reach defined services at a remote location, including the Naming Service. A second
URL format, iiopname, actually invokes the remote Naming Service using the name that the user
appends to the URL, and retrieves the IOR of the named object.

For example, an iioploc identifier iioploc://www.comany.com/NameService would resolve to the
CORBA Naming Service running on the machine whose IP address corresponded to the domain name
www.company.com, assuming that a Name Server was running at this company.

5.4.9 Inter-ORB Architecture (GIOP and IIOP)

As specified previously, initial specifications of CORBA (i.e., CORBA 1.1 and 1.2) did not specify many
implementation details such as security. This has led to CORBA implementations by vendors that do
not interoperate with each other. In particular, ORBs based on CORBA 1.1 and 1.2 from different
vendors interoperate with each other only through joint agreements and partnerships between vendors.
CORBA 2.0 addressed this problem (CORBA 3.0 includes this feature) by defining inter-ORB protocols
(IOPs) for interoperability of Object Request Brokers. For existing ORBs that do not interoperate, OMG
is specifying an API for adding bridges between ORBs.

The IOP specifications are significant feature of CORBA because they allow ORBs, potentially from
different suppliers, to interoperate with each other. These specifications do not impact application
developers (application programmers will typically not write code at this level), but they do play an
important role in how an application developed on one ORB can interoperate with an application
developed on another ORB. Figure 5-19 shows the principal IOPs and depicts how they interrelate
with each other.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-39

 CORBA IDL

 General Inter-ORB
Protocol (GIOP)

 Internet
Inter-ORB
Protocol
(IIOP)

TCP/IP

 Others

For
example
(SPX,
ATM,
SS7)

 Environment Specific
Inter-ORB
Protocol (GIOP)

 DCE RPC
over
TCP/IP

 Others
For
example
Wireless
CORBA

Legend
Mandatory for CORBA

Optional for CORBA

Figure 5-19: CORBA Inter-ORB Architecture

General Inter-ORB Protocol (GIOP). This IOP specifies a set of message formats and common data
representations for interactions between ORBs. The GIOP is especially designed for ORB-to-ORB
communications. It is intended to operate over any connection-oriented transport protocol. The
Common Data Representation (CDR) is used to map OMG IDL data types (pointers and linked lists)
into a "flattened" network message that can be transported over the network. GIOP also specifies a
format for interoperable object references so that a given object can be accessed from different ORBs.

Internet Inter-ORB Protocol (IIOP). This IOP specifies how GIOP messages are exchanged over a
TCP/IP network. IIOP allows a lightweight implementation of CORBA so that CORBA can operate
directly on top of TCP/IP and not on top of DCE. IIOP is a required feature of CORBA 3.0. In other
words, an ORB must support IIOP to be CORBA 3.0 compliant. GIOP specifications on top of
IPX/SPX, ATM networks, and telecom SS7 networks are under different stages of development.

Environment Specific Inter-ORB Protocols (ESIOPs). These IOPs are an alternative to GIOP and
are specified for specific environments. CORBA 3.0 has specified DCE as the first of many optional
ESIOPs. DCE/ESIOP does not require DCE IDL (OMG IDL does the job). The DCE/ESIOP includes
many features that are important for mission critical applications. Examples of these features are the
DCE security, cell and global directories, authenticated RPCs, and distributed time services (all these
features are part of OSF DCE). However, this makes CORBA 3.0 applications heavy weight ("CORBA
Heavy"). Another ESIOP has been defined for Wireless CORBA. In the future, ESIOPs may be
specified for other environments.

Bridges Between ORBs (Half and Full Bridges). CORBA provides facilities for developing generic
ORB-to-ORB bridges. These bridges come in two flavors: half bridges and full bridges. Figure 5-20
shows these bridges.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-40

 ORB Half-Bridges. An ORB half-bridge relies on a common ORB (the "backbone" ORB) to
interconnect different ORBs. For example, Figure 7.13a shows how an IIOP backbone can be
used to interconnect different proprietary ORBs. The key point is that your ORB needs to
communicate with an IIOP through a half-bridge that translates your ORB to IIOP. After this, the
IIOP can be used as a "Global ORB" bus. Keep in mind that IIOP runs on top of the Internet. The
ORB half-bridges are similar to the gateways used in networks that convert different network
protocols (e.g., SNA, SPX/IPX, OSI) to a backbone network protocol (e.g., TCP/IP). Half-bridges
allow a federation of different ORBs around an IIOP backbone.

 ORB Full-Bridges. The full-bridges directly convert one ORB to another without requiring a
common backbone ORB. The CORBA 2.0 Dynamic Skeleton Interface (DSI) is used to receive
outgoing messages and the Dynamic Invocation Interface (DII) is used to receive inputs and invoke
destination objects (see Figure 7.13b). Thus an ORB from one vendor can communicate with an
ORB from another vendor directly. This approach is used in some bridges such as CORBA/OLE
bridges [Orfali 1996].

Client

ORB A

Backbone ORB (IIOP)

Server

ORB B

ORB C ORB D

Client

ORB A

Server

ORB A

A) Half Bridges B) Full Bridges

= Half Bridges = Full Bridges

Figure 5-20: ORB-to-ORB Bridges

5.4.10 CORBAComponents Package

CORBAcomponents represents an attempt with potential benefits for programmers, users, and
consumers of component software. The three major parts of CORBAcomponents are:

 A container environment that packages transactionality, security, and persistence, and provides
interface and event resolution;

 Integration with Enterprise JavaBeans; and
 A software distribution format that enables a CORBAcomponent software marketplace.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-41

The CORBA Component architecture consists of several interlocking conceptual pieces that enable a
complete distributed enterprise server computing architecture. These include an Abstract Component
Model, a Packaging and Deployment Model, a Container Model, a mapping to EJB and an Integration
Model for Persistence and Transactions. The OMA framework for supporting the definition, code
generation, packaging, assembly, and deployment of these CORBA components is collectively called
the CORBA Component Model (CCM). It represents a major extension and addition to the OMA and
CORBA.

Although a great deal of press has been devoted to CCM, it has not materialized in strong industrial
products. The future of CCM is dubious at this time due to the popularity of other component models
such as Suns's J2EE and Microsoft's .Net. Due to this reason, we will not spend a great deal of time on
CCM. The interested reader should consult the OMG web site (www.omg.org) for additional details.

5.4.11 CORBA Scripting

Scripting for CORBA Components and Objects provides a uniform scripting environment for CORBA
applications. No distinctions are made between CORBA objects/components and “local”
objects/components in CORBA scripting. The CORBA Scripting is aimed at the creation of assembly of
components, the management of servers, servants and objects, testing. The scripting languages can
be Interpreted or semi/compiled. The specification contains 4 scripting-language mappings: JavaScript,
CorbaScript, Pyton, and Tcl. The scripting specification is Dynamic Invocation/Skeleton based

Scripting languages, such as CorbaScript, are especially designed for testing CORBA
applications. CorbaScript, in particular, is a general-purpose, object-oriented scripting language that
allows any user to quickly develop test scripts by interactively accessing objects available on the
CORBA bus

5.4.12 CORBA 3.0: Conclusions

After ten years of cooperative work by OMG members, the base CORBA infrastructure is complete and
in constant use at thousands of sites. The extensions bundled under the banner of CORBA 3 bring
ease-of-use and precise control to established architecture. These additions will ensure that CORBA
continues to play an ever-increasing role in the computing world of the future.

 Powerful distributed object environment
 Reasonably complete and vendor/language independent
 Sophisticated solutions e.g., components, Trader Service, UML, MOF, ...
 Still several open issues

However, CORBA 3.0 is not complete and will continue to grow. Specifically:

 Limited number of services are available, more services need to be defined
 Some new services need completeness. For example, POA can be further improved because it

lacks sophisticated threading policies. Also, CORBA Objects cannot be moved/copied in object by
value.

 Interoperability needs additional work. Some interoperability issues have been solved, other are
open, e.g., permanent object server interoperability and implementation repository interoperability

5.4.13 Other OMG Activities

The OMG is constantly evolving and improving. Examples are:

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-42

 The Open Group Interoperability Assurance Program. This includes ORB implementation of
CORBA features, test suite for application portability, and network computer interoperability.

 Analysis and Design Platform Task Force. This Task Force is developing several facilities such as
Stream-based Model Interchange, Semantics for UML, Corporate Warehouse Model (CWM)
specifications, and Software Process Engineering. This process is working through its RFP/RFI
cycles.

 Benchmarks, Performance and Realtime . A Platform Special Interest Group (PSIG) of OMG is
considering specifcations for Benchmarks, , High Performance CORBA, and Realtime CORBA..

 Business Objects. Business objects (BOs) are objects that represent entities and processes that
occur in real-world business domains, such as customers, orders, accounts, etc.They are distinct
from technology objects that represent artifacts of software technology, such as name contexts,
transactional resources, etc. A business domain object model consists of the specification of a set
of business object types and of the relationships among them.

In addition, numerous Domain Task Forces (DTFs) are developing CORBA services for vertical
markets. Examples of vertical domains are:

 The Telecommunication Task Force, that is concentrating on the Event Services, asynchronous
interaction model, publish/subscribe model of event distribution, and basic QoS and filtering

 Financial Domain Task Force that is concentrating on party management and , general ledger
 CORBAmed Domain Task Force (DTF) is working on clinical observations, Healthcare resource ,

Healthcare data interpretation, Clinical Image Access Server, Medical Transcript Management,
 Utility Domain Task Force that is working on Utility Management System data Access Facility
 Electronic Commerce DTF exists to define and promote the specification of OMG distributed object

technologies for the development and use of Electronic Commerce and Electronic Market systems.
It is concentrating on electronic payment and negotiaition facility for trading

5.5 CORBA Operability (Performance, Scalbility, Fault Tolerance) and
Summary

5.5.1 CORBA Reality Check -- Operability (Performance, Scalbility, Fault Tolerance)
Issues

You may be overwhelmed by the CORBA wide range of CORBA services and facilities – not very
many applications need all these services. In fact, only needed services can be included at system
configuration time. These object services provide a powerful set of capabilities for creating customized
middleware. For example, a CORBA"heavy" middleware can be built for transaction management with
high security and messaging requirements by including the CORBA Transaction, Security and
Messaging Services. On the other hand, a CORBA "light" middleware can be created by ignoring many
object services. Cost is also a consideration in using these services. Most CORBA vendors at present
charge separate license fee for each service. Thus, you have to evaluate the cost implications before
buying a CORBA service. In many real life situations, cost helps to clarify thinking – this may be one of
those cases.

An important issue to keep in mind about CORBA is that it is a specification, not an implementation.
Thus the vendor implementations of CORBA must be analyzed carefully for performance, scalability,
fault tolerance, portability, and interoperability. :

Performance and scalability analysis. Approaches to performance and scalability of distributed
systems vary widely (see, for example [El-Rewini 1997]}. For performance, response time is the most
common metric. However, throughput (transactions per second), memory utilization, CPU utilization,
and I/Os issued can also be used for performance metrics: For scalability, we need to examine how

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-43

easy it is to “expand” the system capabilities as the demands on the system increase. General
scalability parameters for distributed systems may include no of clients handled per server, no of
servers allowed (supported), no of active sessions (number of threads), "concentrators" (replicated
identical servers) supported, total no of users (directory entries), database size, number of files, and
other application specific measures.

A set of experiments, such as the ones suggested in Table 5-3, are needed to help in the
analysis/evaluation of competing ORB products. These experiments, based on our own experience at
Telcordia Technologies, include:

 Core Services Experiments: compare ORBs based on Bind and “null” RPC times for single-
threaded, multiple-threaded client and server

 Assessment of scalability and connection management
 Nameserver Performance Experiments: Create a naming tree containing 10,000 object bindings

and measure times to create contexts and bindings. Test nameserver crash recovery.
 Performance of a CORBA Server Demultiplexing varying the number of services instance in the

server process space. The ORB call dispatcher was a bottleneck in the early off the shelf
implementations.

 Data Marshalling/Unmarshalling Experiments. Passing different type of data structures in CORBA
incurs different overhead due to marshalling/unmarshalling. Experiments used Netscape
Navigator and Microsoft Internet Explorer over IIOP as well as Orbix proprietary protocol.

 Object Transaction Experiments

Operational analysis (fault tolerance, portability, interoperability). Operational and management
support include fault tolerance, portability, interoperability, manageability (i..e., load balancing,
monitoring capabilities, start-up/shutdown), installation and maintenance (e.g., ease of installation and
support), and cost/technical support are pivotal to the successful deployment of CORBA-based
applications. Table 5-4 suggests a set of operational support and management experiments .

Our main findings after running through a series of experiments listed in these two tables are:

 Performance and scalability features of different ORBs vary significantly. Thus It is important to
bring in the vendor products and test theme thoroughly. The vendors appear to improve their
products in response to the problems, especially in the areas of high visibility.

 The vendors appear to improve their products in response to the problems
 Portability of code between two ORBs even when both conform to the same CORBA specification

is not trivial
 CORBA does perform adequately andoes scale well under several conditions.
 The developments in minimal CORBA and realtime Corba are further expected to improve the

situation.
 It is important to investigate all services (event, trader, transaction) to get better insights
 Application performance depends on type of applications
 General design guidelines should be developed by the application designers

Table 5-3: Suggested Performance and Scalability Tests of ORB Services

CORBA Services Performance Experiments Scalability Experiments
ORB basic
service

a) Binding time
b) "Null" object invocation (Ping)
c) Data type passing ("Timer application")

a) increase no of calls (same client, same server)
b) increase no of clients
c) increase no of object servers (same machine)
d) increase amount of data passed

Thread Services a) Time for thread pooling
b) Time for Thread per Session

a) Scaling of thread pools
b) scaling of threads per session

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-44

Life Cycle service Time to create an object , memory limitations Creation of objects (how many)
Name Services a) Time to access naming service (benefit in

doing handle caches)
b) Time to use name contexts and context
factories

a) number of entries in directory,
b) handling large number of entries ("cells", or
"domains"),

Security services Time to authorize/authenticate No. of users
Transaction
Services

Time for successful and unsuccessful
transactions

No of concurrent transactions(no. of locks held)

Persistence
service

Time for database access Database sizes

Trader service Time to find the “best” server Do traders scale for large number of servers
Event services Time for notification No of events

Table 5-4: Operational and Management Experiments

Operational and
Support Issues

Basic Issues Additional Issues

Fault Tolerance System behavior and performance under
different types of failures.
Daemon failure
Server fault.
Host failure

Measure time of recovery (i.e., does it recover at
all, does any thread block), exceptions (does the
client detect any problem), and performance
degradation (i.e., how much does the
performance degrade during the transitory time,
how many transaction experience large delays)
for various failure scenarios.

Interoperabi-lity Clients from vendor1 ORB access servers from
vendor 2 ORB
Clients in one language access servers in
another

Interoperability among complex applications
Fault tolerance among different ORBs (i.e., can
an application across ORBs be fault tolerant?)

Portability IDL portability
Client portability
Server portability

Guidelines for developing portable CORBA
applications

Installation and
maintenance

Ease of installation and support Administration for large scale systems

Cost Basic licensing fees for development and run
time

Special licensing fees

Technical Support Availability of documentation and technical staff On-site help in special problem solving

5.5.2 CORBA Summary

Object-oriented technologies and techniques have natural applications in distributed systems. Entities
in distributed systems can be viewed as objects exchanging messages. OMG was formed to create a
suite of standard languages, interfaces and protocols for interoperability of applications in
heterogeneous distributed environments. CORBA is an OMG specification for invoking objects in a
distributed environment.

Initial specifications of CORBA did not specify many details. However, a wide range of capabilities have
been added under the CORBA 3.0 umbrella. In addition, several Domain Task Forces and Platform
Special Interest Groups (PSIGs) have been busily working on different aspects of CORBA. Examples
of key CORBA developments in CORBA Services, distribution protocols, specialized models, vertical
domain facilities, support for analysis and design, and basic object computing model are summarized
in the sidebar “Key CORBA Developments”.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-45

Many vendors are announcing CORBA compliant software. Examples of a few products are:

 Inprise's Visibroker
 Iona's Orbix
 BEA's M3
 IBM's Object Broker

• IBM (SOMobjects) - free for OS/2, AIX, Windows
• PrismTech (OpenBase)
• ParcPlace (Distributed Smalltalk)
• TIBCO (ObjectBus) -
• ObjectSpace (Voyager)
• Objective Interface Systems (ORBexpress) also marketed by ObjecTime
• Bionic Buffalo
• I-Kinetics
• RogueWave (Nouveau)
• Java RMI over CORBA IIOP

 A wide range of free and prototype CORBA implementations are also available. For a list of such
products, consult the Washington University at St. Louis web site (www.wustl.edu/~schmidt/corba-
products.html).

For a wide range of sources, including test tools, are available at http://www.vex.net/~ben/corba/

Additional details about CORBA are listed in the sidebar “Key Sources of Information for CORBA”. The
OMG home page (http://www.omg.org) is an excellent source of the recent activities in CORBA.

Although we have concentrated on the object request brokers so far, the concept of brokers is general
and is currently being exploited in the message broker architectures (see the sidebar "Message Broker:
Another Kind of Broker").

Key CORBA Developments
• CORBA Services

– Naming - directory service: (svc name) ➔ (svc object reference)
– Trading - service discovery: (svc attributes) ➔ (svc name)
– Event/notifcation - Producers notify consumers using events
– Transactions - distributed (2PC), flat transactional objects
– Security - different levels (IIOP over SSL, additionally used)
– Messaging - Support asynchronous processing for loosely coupled

• Distribution protocol
– GIOP (Generalized Interorb Protocol) and its mappings (IIOP)
– Mappings for SS7, ATM

• Specialized Models
– Real-time, Fault-tolerant, Minimum CORBA

• Vertical Domain facilities (e.g., Telecom)
– CORBA to TMN Interworking
– Wireless CORBA

• Support for Analysis and Design
– UML(universal Modeling Language)

• Basic Object-Oriented Computing Model
– CORBA Components, ISO/OMG IDL and language mappings

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-46

Message Broker: Another Kind of Broker
A broker mediates between clients and servers (i.e., instead of a client directly connecting to a server, it
first connects to a broker that in turn finds a suitable server). The concept of a broker is independent of
the implementation of the broker. For example, the best known implementation of the broker
architecture is the object request broker (ORB) i as presented in OMG CORBA specification. In
CORBA, the ORB mediates the interactions between remote objects. Another type of broker, called a
message broker, is being presented as a viable implementation of the broker architecture.

A message broker is not restricted to objects. Instead, it delivers messages between disparate
applications, including legacy applications. The underlying technologies used by the message broker
may consist of RPCs or MOMs, although MOM does appear to fit this model quite well. The basic idea
of a message broker is that it can provide brokerage services asynchronously and support a
"publish/subscribe" model. The message broker can also be rule-based, i.e., you specify the rules to
be used by the middleware to perform certain actions.. Message brokers are at the core of “Enterprise
Application Integration” platforms that are commercially available from many vendors such as Active
Software, Vitria, and IBM. EAI platforms, based on message brokers, are expected to be a $11 Billion
market by the early 2000s. We will discuss EAI platforms in a later chapter.

The Gartner Group proposed and advocated message brokers as key to the future success of
distributed computing. The Gartner Group predictions in the mid 1990s that message brokers will be
as widespread as database gateways and data warehouses have been correct. See, for example, Bort,
J., "Can Message Brokers Deliver?", Applications Software Magazine, June 1996, pp.70-76).

5.6 A Detailed CORBA Example

5.6.1 Overview

Let us go through an example of developing a simple inventory system by using CORBA. The
inventory system consists of a relational table that contains product information (e.g., product ID,
product name, price, and quantity on-hand). This table is managed by a "product object" that responds
to requests from clients to add, view, update, and delete a product. For example, a client invokes a
product view operation by passing a product ID. The product object receives the request and invokes a
method that reads the product information and sends it back to the client. Table 7.2 shows the object
model for the customer object. In the sections that follow, we will use this model as a starting point for
defining the interface, building a server and building clients in CORBA.

This example is intended to give an overview of the process needed for CORBA application
development. Additional details can be found in books and araticles such as [Otte 1996, Minton 1996,
Orfali 1996, Mowbray 1995].

Table 5-5: The Product Object

Object Operations Inputs Outputs

Product 1. Add a product

Product information

Status

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-47

2. View a product
information

3. Update a product
information

4. Delete a product

Product ID of the
products

Product ID, new
information

Product ID

Product information (a
structure)

Status and indication
that a change was
made

___Status

Figure 7.19 shows the activities involved in developing OO applications in CORBA (this figure is
repeated from an earlier discussion):

• Create CORBA definitions by using OMG IDL

• Build the server

• Build the client

5.6.2 Create CORBA Definitions

The following CORBA definitions are created as the first step in CORBA application development:

• Define the interface

• Define the implementation

• Define the method map

As stated previously, the interface of an object is used to declare the behavior of an object. For
example, the following statements specify the interface for the product object in CORBA IDL. This
interface only supports two operations (we have simplified it somewhat for illustrative purposes):

module PRODUCT_PACKAGE {
interface product_interf /* interface name is product */
insert_product (/*Operation is insert_product */
in char product_obj; /* input is product object */
out integer status) /* output parameter */
view_product (/*Operation is view_product */
in char product_id; /* input pparameter is product-id */
out object product_obj; /* output: product object */
out integer status) /*output parameter 2 */
}

The module statement is used to name a group of interfaces that relate to each other and can be used
to represent a package (i.e., a group of objects). The module name becomes part of the name that the
client and server use to reference an interface. The interface statement shows what operations can be
performed on the customer object (we have only shown two operations, others can be filled in by the
reader). Each interface statement defines an interface and contains the descriptions of the operations
(operation signatures). The complete name of an operation includes the module and the interface
name. For example, "PRODUCT_PACKAGE::product_interf::insert_product" is the fully qualified name
of the operation that creates a new product.

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-48

1. Interface definition
in IDL

IDL
Compiler

Stub
class

Skeleton
class

Other support
Java classes

3. Client
Development.

2. Server (Object
Implementation)

Java
Compiler

Client
bytecode

Server
bytecode

Figure 5-21: CORBA Application Development

The IDL file is compiled to create the client stub and the server skeleton. The client stub and server
skeleton are the code templates for building CORBA client and server programs (see Figure 5-21). The
client stub is used only to build client programs that use static binding. The server skeleton is always
used as the framework for building the server application, regardless of the invocation type used by the
client.

Operations on objects are impl.lemented by executable code called methods. For example, the product
object must contain the code ("add-product-method") that will be executed to actually create a new
product when an operation "add-product" is invoked by a client. The collection of methods that
accomplishes the set of operations required for an object is called an implementation. Some CORBA
implementations offer a mapping language for describing implementations called the Implementation
Mapping Language (IML). The implementation descriptions can be stored in an Implementation
Repository. which can be displayed by CORBA compliant commands or the Repository Manager. The
following statements show the implementation of product methods (once again, we have simplified this
somewhat):

implementation productImpl
(
activation_type (program);
implementation _identifier ("676873.0c.03.00.00.00.00");
add_product_method ()
implements (PRODUCT_PACKAGE::product_interf::add_product);
invoke_builtin ("add_p_function)
;
);

The implementation statement is used to specify the name of the implementation. The first few, in our
case the first two, statements in an implementation specification are used at start-up time. The
activation_type() statement specifies the manner in which the implementation is started once it is
selected. For example, (program) indicates that a program will be started; other options indicate
dynamic load and script executions. The implementation _identifier() clause is used to assign a unique
identifier to an implementation. The unique identifier is automatically generated in response to the
CORBA command "orbgen'. For each method in the implementation, you define the method name, the

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-49

operation it supports, and how to run it. In our example, we have defined only one method
(add_product_method) that implements the add_product operation defined in the IDL and invokes a
built-in module. Method specifications allow invocation options for dynamic and script executions.

In addition to IML, you may need to define method maps. These maps are used by the ORB to locate
the best server method for the object operation requested when there are more than one active
implementations of an interface. For example, when a client invokes the "add_product" operation, then
the ORB looks at the method maps to determine the most appropriate method to invoke. The method
map can be stored in the Interface repository along with the interface definitions. You can use CORBA
commands to generate a default method map from the interface definitions.

5.6.3 Build the Server

 Building of program servers requires the following steps:

• Generate the server skeleton

• Develop server initialization code

• Develop code for each method

• Compile, link and test the server components

• Register the server

The first step is to specify the IDL statements and then compile these statements to generate a server
skeleton. This compilation also uses the information contained in the IML files. The server skeleton
contains method templates that show entry points for all of the implementation methods, the server
dispatcher code that makes the implementations, the methods known to the ORB, and a registration
routine is also generated as part of the server code. The skeleton code simplifies the task of building a
server.

Each server initialization needs code to register the implementation (e.g., make itself available for use),
activate the server's implementation, enter a main loop to receive requests, and exit after unregistering
and releasing resources. In addition, the server needs routines for creating objects and managing
references to these objects. The server skeleton is used to develop this code. The initialization code
uses CORBA run-time routines (these routines are identified as CORBA_ or ORB_). An example of the
server C-type pseudo code for the product example is listed below (we have simplified this code by
ignoring the error checking and by using a generic "parameter" for the CORBA provided functions):

#include <stdio.h>
#include <orb.h>
#include product.h /* the IDL generated header */
main ()
{
printf ("product server starting \n");

/* Register the implementation */
status = RegisterImpls (parameters);

/* Create object and its reference */
status = CreateObjRefs(parameters);

/*Make server ready */
CORBA_BOA_impl_is_ready (parameters); /* indicate server ready */

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-50

/* main loop to listen to client messages */
ORB_BOA_main_loop (parameters); /* enter the main loop */

/* exit code */
CORBA_BOA_dispose(parameters); /* Frees object references */
ORB_BOA_imp_unregister (parameters); /* Unregister */

/* Methods code templates */
void insert_product (product_obj, status);
/* insert code for add_product method ...*/
void view_product (product-id, product_info, status);
/* insert code for view_product method ...*/
}

The major activity in building a CORBA server is to write the code for the methods that execute the
operations. For each method template, you must develop the code for the methods. Methods can be
implemented as executable code, calls to legacy applications, or scripts to integrate command line
interfaces with existing applications. Methods can be written to invoke OLE (Object Linking and
Embedding), DDE (Dynamic Data Exchange), and SQL database accesses. For example, the
following pseudo code to access the product relational table can be added to the add_product and
view_product methods:

void add_product (product_obj, status);
/* code for converting product_obj object into
SQL table attributes such as pid, pname, price, on_hand */
exec sql;
insert pid, pname, price, on_hand into product_table;
end sql;
/* .. include other code */

void view_product (product-id, product_obj, status);
exec sql;
select pid, pname, price, on_hand from product_table where pid=:product_id;
end sql;
/* code for storing pid, pname, price, on_hand into an object */
}

The final step in building a server is to compile and link the methods, server initialization code, the
generated server dispatcher and the generated registration routine. The server code can tested and
debugged by using CORBA tracing facilities.

5.6.4 Build Client (Static Invocation)

After a server has been built and registered, clients can be built to invoke the servers. As stated
previously, CORBA clients can use static invocations (i.e., clients know at compile time the objects and
the operations on these objects) or dynamic invocation (i.e., the clients determine at run time the
objects and the operations on these objects). We will focus on static invocation in this section and
review dynamic invocation in the next section. The steps involved in building a static invocation CORBA
client are:

 Generate client stub
 Define the context object
 Build the client code
 Compile and link the client

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-51

The client stub can be generated from IDL, IML and MML source files or from the interface repository.
The generated stub consists of a header file that contains definitions, and the C language stub routines.

A context object shows a set of properties providing information about the client, the environment, or
characteristics of the request. The context object is used by ORB during method resolution to identify
user preferences for server selection. Basically, it provides a means of maintaining information between
requests for conversational applications. The context information is difficult to pass as parameters in a
distributed application. The IDL is used to specify whether the ORB should also retrieve information
regarding the request from the context object (the "context" clause in IDL). If no context object is
specified, the ORB uses the default context object definition. Context objects can be specified at user
level (e.g., user preferences), group level (e.g., data restricted to a group of users), or system level
(e.g., display types for an application).

The client code includes header file generated by IDL, "local" client code (e.g., communicate with the
user), invoke object operations defined in IDL, and handle errors/exceptions.

To invoke the object operations, a client needs to first get an object reference (object references can be
stored by the server at start-up in an external file or Registery), and then invoke a method on the object.
The following client pseudo code illustrates the key points: of a client that invokes the add_product and
view_product methods:

 #include <stdio.h>
 #include product.h /. the IDL generated header ./
/* define variables, etc. */
 main ()
{
 /* code to obtain object reference. This code depends on where the server stored the reference. If object reference is in
a file, then use fget, for example, to read the object reference */

 product_interf *pptr; /* *pptr is the object reference */

/* Now invoke the add_product and view_product methods */

/* put information in product_obj */
pptr->add_product (product_obj, status); /* invoke the object method */
printf ("product added");
product_id = "1111";
pptr->view_product (product-id, product_obj, status); /* invoke the object method */
printf ("product information", product_info);
/* Other client code, e.g., free resources, error processing, etc. */

After coding the client, it is compiled, linked and debugged. by using the CORBA environment
compilers and tracing facilities.

5.6.5 Building a Client (Dynamic Invocation)

CORBA's Dynamic Invocation APIs allow a client program to build and invoke requests on objects at
run time. These APIs provide maximum flexibility by allowing new objects to be added at run time. The
client specifies, at run time, the object to be invoked, the method to be performed, and the set of
parameters through a call or a sequence of calls. The client code typically obtains this information from
the Interface Repository. To invoke a dynamic method on an object, the client must perform the
following steps:

• Obtain the method description from the Interface Repository

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-52

• Create the argument list

• Create the request

• Invoke the request

CORBA specifies about ten API calls for locating and obtaining objects from the Repository. An
example of such an API call is lookup_name(). A describe call is issued, after an object is located, to
obtain its full IDL definition. To create an argument list, CORBA specifies a NameValue list as a self--
defining data structure for passing parameters. The list is created by using the create_list operation.
After this, the request is created using the CORBA create_request call. Eventually, the client can invoke
the request by using either an invoke call (send the request and obtain the results, i.e., a synchronous
call), or a send call (an asynchronous call). The following pseudo code shows a sample dynamic
invocation:

/* Create method description */
lookup_name()
describe ()
/* Create argument list */
create_list ()
add_arg(),,, add_arg(),,,, add_arg()
/* create the request */
create_request(Object Reference, Methods, Argument List)
/* Invoke the remote method synchronously - as an RPC */
invoke()
/* Now process the results */
Distributed Objects (CORBA and OLE/ActiveX)
7

5.7 Summary

Object-orientation (OO) has a great deal of promise in reducing the complexity of C/S applications.
The primary standard for distributed OO systems is OMG's CORBA. CORBA is a very powerful and
important specification for distributed object oriented applications. Although other technologies such as
SOAP are getting more attention at present, development in CORBA continues.

Key Sources of Information for CORBA

 J. Seigal, “CORBA 3.0: Fundamentals and Programming”, second edition, Wiley, 2000
 D.Schmidt, Overview of CORBA: http://siesta.cs.wustl.edu/~schmidt/corba-overview.html
 R.Orfali, D. Harkey, Client/Server Programming with Java and CORBA, Wiley 1997
 T. Mowbray, W. Ruh, Inside CORBA, Addison-Weslet 1997
 T. Mowbray, R. Zahavi, The Essential CORBA, Wiley 1995
 T. Mowbray, R. Malveau, CORBA Design Patterns, Wiley 1997
 J. Farley, Java Distributed Computing, O’Reilly 1997
 The OMG website: http://www.omg.org
 “Corba Connections”, Comm. of ACM, Special Issue, October 1998
 http://www.vex.net/~ben/corba/ -- An interesting private Web site that watches CORBA ORB

Core Feature Matrix , CORBAservices Feature Matrix , and CORBA Vendor Platform Matrix
• CORBA Business Objects (Workflow)

CHAPTER FIVE: CORBA TECHNOLOGIES – A CLOSER LOOK

COPYRIGHTED (AMJAD UMAR)

5-53

• Object Management Research in LASER (Pleiade)
• CORBA Web gateway
• Joint Inter Domain Management
• Towards a Web Object Model - by Frank Manola
• Gabriel D. Minton's papers
• CORBA Design Patterns - by Thomas Mowbray and Raphael Malveau.
• Alan Pope (The CORBA Reference Guide)
• Kate Keahey's Brief Tutorial on CORBA
• Manfred Schneider's CORBA links
• CORBA for Linux
• Segue Software (was Black & White) (SilkPerformer, SilkMeter, SilkPilot, SilkObserver)
• Tom Valesky's Free CORBA page
• Defense Information Infrastructure - Predicting CORBA Performance.
• Benchmarking some ORBs
• GNOME - GNU Network Object Model Environment
• Michi Henning
• Dominique Benech's COBALT: A KQML-CORBA based Architecture for Intelligent Agents

Communication
• Live Script and Live Repository

